MyNixOS website logo
Description

Educational Outlier Package with Common Outlier Detection Algorithms.

Provides implementations of some of the most important outlier detection algorithms. Includes a tutorial mode option that shows a description of each algorithm and provides a step-by-step execution explanation of how it identifies outliers from the given data with the specified input parameters. References include the works of Azzedine Boukerche, Lining Zheng, and Omar Alfandi (2020) <doi:10.1145/3381028>, Abir Smiti (2020) <doi:10.1016/j.cosrev.2020.100306>, and Xiaogang Su, Chih-Ling Tsai (2011) <doi:10.1002/widm.19>.

OutliersLearn R Package

RStudio License: MIT

Overview

OutliersLearn is an R package designed to teach and demonstrate different outlier detection algorithms. The algorithms are programmed to provide informative messages while executing on real data, helping users understand the inner workings of each algorithm.

Installation

Will be available to download/install from CRAN To install from GitHub execute this commands in your R session:

install.packages("devtools")
library(devtools)
install_github("MissiegoBeats/OutliersLearn")
library(OutliersLearn)

To install from CRAN:

install.packages("OutliersLearn")
library(OutliersLearn)

In case you want to install the R package using a specific CRAN Mirror:

install.packages("OutliersLearn", repos="<CRAN Mirror URL>")
library(OutliersLearn)

Algorithms included

  • Box & whiskers

    boxandwhiskers()

  • Standard Deviation Method

    sd_method()

  • K neighbors

    knn()

  • Local Outlier Factor (Simplified Version)

    lof()

  • DBSCAN

    DBSCAN_method()

  • Mahalanobis Distance Method

    mahalanobis_method()

Other functions included

  • manhattan distance function

    manhattan_dist()

  • euclidean distance function

    euclidean_distance()

  • quantile function

    quantile_outliersLearn()

  • transform to vector function

    transform_to_vector()

  • Mean of a vector

    mean_outliersLearn()

  • Standard deviation of a vector

    sd_outliersLearn()

  • Mahalanobis distance

    mahalanobis_distance()

See more about them using the command help()

Licence

Check the corresponding "LICENSE" file to see the whole license information

Contact me

If there is any question, feel free to open a new issue with the "question" label. If needed, i'll add a Q&A section in the repository issues.

Metadata

Version

1.0.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows