MyNixOS website logo
Description

Building PRS Models Based on Summary Statistics of GWAs.

Shrinkage estimator for polygenic risk prediction (PRS) models based on summary statistics of genome-wide association (GWA) studies. Based upon the methods and original 'PANPRS' package as found in: Chen, Chatterjee, Landi, and Shi (2020) <doi:10.1080/01621459.2020.1764849>.

PANPRS

Installation

For the sparse matrix implementation, please install the R package as follows:

devtools::install_github("katherine-h-l/PANPRSnext@sparse", force = TRUE)

For the dense matrix implementation, please install the R package as follows:

devtools::install_github("katherine-h-l/PANPRSnext@master", force = TRUE)

Input for PANPRS incorporating multiple traits and functional annotations of SNPs.

summaryZ, The Z statistics of p SNPs from q GWA studies. A matrix with dimension p x q for p SNPs and q traits. The first column corresponds to the primary trait and the rest columns correspond to the secondary traits.

Nvec, A vector of length q for the sample sizes of q GWA studies.

plinkLD, LD matrix information.

NumIter, The number of maximum iterations for the estimation procedure.

funcIndex, Inputs for the functional annotations of SNPs. A p x k matrix with (0,1) entry; p is the number of SNPs and k is the number of functional annotations. For the element at i-th row, j-th column, the entry 0 means SNP i without j-th functional annotation; entry 1 means otherwise.

numfunc, The number of functional annotations.

dfMax The upper bound of the number of non-zero estimates of coefficients for the primary trait.

Usage:

The current version only work on Unix, Linux and Mac System, R(>=3.4.3), R packages "gtools" and "permutations" and GCC(>=4.4.7) are required.

Modify the parameters in the gsfPEN.R, and execute it.

Example

Please find it in the R package.

Metadata

Version

1.2.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows