MyNixOS website logo
Description

Group Regression Models for Risk Protein Complex Identification.

Two protein complex-based group regression models (PCLasso and PCLasso2) for risk protein complex identification. PCLasso is a prognostic model that identifies risk protein complexes associated with survival. PCLasso2 is a classification model that identifies risk protein complexes associated with classes. For more information, see Wang and Liu (2021) <doi:10.1093/bib/bbab212>.

PCLassoReg

Protein complex-based group regression models for risk protein complex identification.

Installation

To install the released version from CRAN with:

install.packages("PCLassoReg")

To install the latest development version from GitHub:

devtools::install_github("weiliu123/PCLassoReg")

Details

The package implements protein complex-based group regression models (PCLasso and PCLasso2) for risk protein complex identification. PCLasso is a prognostic model that identifies risk protein complexes associated with survival. PCLasso2 is a classification model that identifies risk protein complexes associated with classes.

Example

library(PCLassoReg)

#################### PCLasso ####################
# load data
data(survivalData)
data(PCGroups)

x <- survivalData$Exp
y <- survivalData$survData

# get human protein complexes
PC.Human <- getPCGroups(Groups = PCGroups, Organism = "Human",
                        Type = "EntrezID")

set.seed(20150122)
idx.train <- sample(nrow(x), round(nrow(x)*2/3))
x.train <- x[idx.train,]
y.train <- y[idx.train,]
x.test <- x[-idx.train,]
y.test <- y[-idx.train,]

# fit cv.PCLasso model
cv.fit1 <- cv.PCLasso(x = x.train, y = y.train, group = PC.Human, nfolds = 5)

# predict risk scores of samples in x.test
s <- predict(object = cv.fit1, x = x.test, type="link",
             lambda=cv.fit1$cv.fit$lambda.min)

# Nonzero coefficients/risk protein complexes
sel.groups <- predict(object = cv.fit1, type="groups",
                      lambda = cv.fit1$cv.fit$lambda.min)
# Nonzero coefficients/risk proteins
sel.vars.unique <- predict(object = cv.fit1, type="vars.unique",
                           lambda = cv.fit1$cv.fit$lambda.min)

#################### PCLasso2 ####################
# load data
data(classData)
data(PCGroups)

x = classData$Exp
y = classData$Label

# get human protein complexes
PC.Human <- getPCGroups(Groups = PCGroups, Organism = "Human",
                        Type = "GeneSymbol")

set.seed(20150122)
idx.train <- sample(nrow(x), round(nrow(x)*2/3))
x.train <- x[idx.train,]
y.train <- y[idx.train]
x.test <- x[-idx.train,]
y.test <- y[-idx.train]

# fit model
cv.fit1 <- cv.PCLasso2(x = x.train, y = y.train, group = PC.Human,
                       penalty = "grLasso", family = "binomial", nfolds = 5)

# predict risk scores of samples in x.test
s <- predict(object = cv.fit1, x = x.test, type="class",
             lambda=cv.fit1$cv.fit$lambda.min)

# Nonzero coefficients/risk protein complexes
sel.groups <- predict(object = cv.fit1, type="groups",
                      lambda = cv.fit1$cv.fit$lambda.min)
# Nonzero coefficients/risk proteins
sel.vars.unique <- predict(object = cv.fit1, type="vars.unique",
                           lambda = cv.fit1$cv.fit$lambda.min)

Reference

PCLasso2: a protein complex-based, group Lasso-logistic model for risk protein complex discovery. To be published.

PCLasso: a protein complex-based, group lasso-Cox model for accurate prognosis and risk protein complex discovery. Brief Bioinform, 2021.

Park, H., Niida, A., Miyano, S. and Imoto, S. (2015) Sparse overlapping group lasso for integrative multi-omics analysis. Journal of computational biology: a journal of computational molecular cell biology, 22, 73-84.

Metadata

Version

1.0.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows