MyNixOS website logo
Description

Predicting Environmental Concentration and Risk.

A Shiny Web Application to predict and visualize concentrations of pharmaceuticals in the aqueous environment. Jagadeesan K., Barden R. and Kasprzyk-Hordern B. (2022) <https://www.ssrn.com/abstract=4306129>.

PERK

R-CMD-check CRANstatus TotalDownloads Lifecycle:stable

Description

PERK is an R package containing a tool (Shiny App) to predict and visualize environmental concentration and risk using pharmaceutical prescription data collected at fine spatial resolution.

The tool helps users to input their measured concentration, to compare the predicted (PEC) and measured concentrations (MEC) of the pharmaceuticals by means of the PEC/MEC ratio, to establish whether the predicted equations used tend to underestimate or overestimate measured values.

It provides a consistent interactive user interface in a familiar dashboard layout, enabling users to visualise predicted values and compare with their measured values without any hassles. Users can download data and graphs generated using the tool in .csv or publication ready images.

Getting started

Although the main purpose of the R package is to be installed and used locally, you can give it a quick online test run to determine whether it’s right for you before installing it. With just 3 commands, you can install it and begin using it if you like what you see:

install.packages('PERK')
library('PERK')
run_app()

For an introduction to the package, step-by-step instructions on getting started, and more information on the different ways you can use the package PERK-Walkthrough tutorial.

You can install the development version of PERK from GitHub through following command.

install.packages("remotes")
library(remotes)
install_github("jkkishore85/PERK")

Citation and Contributors

Please cite this article from this Preprint if the package helps you with your work in any way that justifies it.

This work is a part of the Wastewater Fingerprinting for Public Health Assessment (ENTRUST) project funded by Wessex Water and EPSRC IAA (grant no. EP/R51164X/1).

Disclaimer

We accept no liability for any errors in the data or its publication here. Use this data at your own risk.

Metadata

Version

0.0.9.2

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows