Distributions Derived from Normal Distribution.
PSDistr - Distributions Derived from Normal Distribution
author: Piotr Sulewski, Pomeranian University
Distributions derived from normal distribution are: two-piece power normal (TPPN), plasticizing component (PC), DS normal (DSN), expnormal (EN), Sulewski plasticizing component (SPC), easily changeable kurtosis (ECK) distributions. Density, distribution function, quantile function and random generation are presented. To read more about the package please see (and cite :)) papers:
- Sulewski P. (2021) DS Normal Distribution: properties and applications, Lobachevskii Journal of Mathematics, 42(12), 2980-2999.
- Sulewski P. (2022) Easily Changeable Kurtosis Distribution. Austrian Journal of Statistics, 52, 1-24.
- Sulewski , P. (2022). New Members of The Johnson Family of Probability Distributions: Properties and Application, Accepted: February 2022. REVSTAT-Statistical Journal.
- Sulewski P. (2020) Normal Distribution with Plasticizing Component, Communications in Statistics ? Theory and Method, 51(11), 3806-3835.
- Sulewski P., Volodin A. (2022) Sulewski Plasticizing Component Distribution: properties and applications. Lobachtetavskii Journal of Mathtetamatics, 43(8), 2286-2300.
- Sulewski P. (2021) Two-Piece Power Normal Distribution, Communications in Statistics ? Theory and Method, 50(11), 2619-2639.
Installation
You can install the released version of PSDistr from CRAN with:
install.packages("PSDistr")
You can install the development version of PSDistr from GitHub with:
library("remotes")
install_github("PiotrSule/PSDistr")
Functions
ddsn, pdsn, qdsn, rdsn
Density, distribution function, quantile function and random generation for the DS Normal Distribution are calculated
library(PSDistr)
ddsn(-0.5,2,2,2,0)
#> [1] 1.053981
pdsn(-0.5,2,2,2,0)
#> [1] 0.7733726
qdsn(0.5,2,2,2,0)
#> [1] -0.6823278
rdsn(10,2,2,2,0)
#> [1] -0.9174543 -0.9531677 -0.9434789 -0.9387052 -0.7463924 -0.3198462
#> [7] -0.5119604 -0.7520390 -0.5192255 -0.1585803
deck, peck, qeck, reck
Density, distribution function, quantile function and random generation for the Easily Changeable Kurtosis Distribution are calculated
deck(1,2,3)
#> [1] 0.2307129
peck(1,2,3)
#> [1] 0.9294434
qeck(0.5,2,3)
#> [1] 0
reck(10,2,3)
#> [1] 0.19273161 0.29262681 0.26832902 -1.04825437 -1.55783427 -1.19081611
#> [7] 0.03379742 -0.44629456 -0.59413517 0.72587502
den, pen, qen, ren
Density, distribution function, quantile function and random generation for the Expnormal Distribution are calculated
den(1,1,2,2,2,1)
#> [1] 0.2666153
pen(1,1,2,2,2,1)
#> [1] 0.7279188
qen(0.5,1,2,2,2,1)
#> [1] 0.2909696
ren(10,1,2,2,2,1)
#> [1] -0.565035585 0.371245691 0.007892049 0.035879908 0.507669393
#> [6] -0.242076982 -1.066860331 0.801121683 -0.353035247 -0.332387666
dpc, ppc, qpc, rpc
Density, distribution function, quantile function and random generation for the Plasticizing Component are calculated
dpc(0,1,2,2)
#> [1] 0.1933341
ppc(0,1,2,2)
#> [1] 0.4012937
qpc(0.5,1,2,2)
#> [1] 1
rpc(10,1,2,2)
#> [1] -0.5623307 3.2750871 -0.3884369 -1.4182320 -1.1450447 3.8902870
#> [7] -0.4963983 -0.4527041 0.3387212 -1.0823312
dspc, pspc, qspc, rspc
Density, distribution function, quantile function and random generation for the Sulewski Plasticizing Component Distribution are calculated
dspc(0,1,1,1,1,0)
#> [1] 0.2419707
pspc(0,1,1,1,1,0)
#> [1] 0.8413447
qspc(0.5,1,1,1,1,0)
#> [1] -0.6823278
rspc(10,1,1,1,1,0)
#> [1] -0.79434037 0.01560102 -0.82784459 0.09298656 -1.18855183 -0.72773510
#> [7] -0.43819889 -0.68688316 -0.61121603 -0.49309748
dspc, pspc, qspc, rspc
Density, distribution function, quantile function and random generation for the Two-piece Power Normal distribution are calculated
dtppn(2,1,1,1,2)
#> [1] 0.4839414
ptppn(2,1,1,1,2)
#> [1] 0.8413447
qtppn(0.5,1,1,1,2)
#> [1] 1
rtppn(10,1,1,1,2)
#> [1] 1.8747816 0.2496032 0.1118770 0.5042015 0.9287008 0.3041738
#> [7] 1.6097886 -0.2114342 1.9926648 0.6559251