MyNixOS website logo
Description

Preference Selection Index Method (PSIM).

The Preference Selection Index Method was created in (2010) and provides an innovative approach to determining the relative importance of criteria without pairwise comparisons, unlike the Analytic Hierarchy Process. The Preference Selection Index Method uses statistical methods to calculate the criteria weights and reflects their relative importance in the final decision-making process, offering an objective and non-subjective solution. This method is beneficial in multi-criteria decision analysis. The 'PSIM' package provides a practical and accessible tool for implementing the Preference Selection Index Method in R. It calculates the weights of criteria and makes the method available to researchers, analysts, and professionals without the need to develop complex calculations manually. More details about the Preference Selection Index Method can be found in Maniya K. and Bhatt M. G.(2010) <doi:10.1016/j.matdes.2009.11.020>.

Implementation in R of the PSI (PREFERENCE SELECTION INDEX METHOD PSI)

https://github.com/luana1909/PSIM/blob/main/README.md

This project consists of the implementation of the method in R, its tests, the CRAN package and a web application written in R Shiny.

If you just want to run the method by reading the data contained in a excelfile, use the application hosted at shinyapps.io. [Open rwisp on shinyapps.io] ( https://luanadeazevedo.shinyapps.io/criteriosdedecisao/)

The web application repository is [github.com/luana1909/PSIM] (https://github.com/luana1909/PSIM)

Reference

MANIYA, Kalpesh; BHATT, M. G. A selection of material using a novel type decision-making method: Preference selection index method. Materials & Design, [S. l.], v. 31, n. 4, p. 1785–1789, 2010. DOI: 10.1016/j.matdes.2009.11.020.

Abstract: The Preference Selection Index (PSI) method is a multicriteria approach (MCDA and MCDM) that stands out for not requiring the assignment of relative importance between attributes. This method is compared with other established methods such as GTMA and TOPSIS. As an innovative and suitable tool for multicriteria problems, PSI simplifies the decision-making process by eliminating the need to determine the relative importance of attributes. The PSI method calculates an overall preference value for each attribute and uses these values to determine a preference selection index for each alternative. The alternative with the highest index is then selected as the best option.

For Use

Install option 1 - from github

library("devtools");
install_github("luana1909/PSIM");
library("PSIM")
...

Install option 2 - from CRAN

install.packages("PSIM")
library("PSIM")
...

Calculation option 1 - from vars

optimizations <- c("min","min", "max", "max") 
#"min" and "max" should be all lowercase
decision_matrix <- data.frame(criterio1 = c(7000, 15000, 20000),
criterio2 = c(700, 800, 1000),
criterio3 = c(280, 300, 180),
criterio4 = c(120, 880, 1200))
 result <- psicalc(data, optimizations)
Metadata

Version

0.1.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows