MyNixOS website logo
Description

General-Purpose Phase-Type Functions.

General implementation of core function from phase-type theory. 'PhaseTypeR' can be used to model continuous and discrete phase-type distributions, both univariate and multivariate. The package includes functions for outputting the mean and (co)variance of phase-type distributions; their density, probability and quantile functions; functions for random draws; functions for reward-transformation; and functions for plotting the distributions as networks. For more information on these functions please refer to Bladt and Nielsen (2017, ISBN: 978-1-4939-8377-3) and Campillo Navarro (2019) <https://orbit.dtu.dk/en/publications/order-statistics-and-multivariate-discrete-phase-type-distributio>.

PhaseTypeR: general-purpose phase-type functions

R-CMD-check CRAN develVersion downloads Codecov testcoverage

This package implements core functions from phase-type theory. Its general functions are useful for a wide-ranging variety of contexts. PhaseTypeR can be used to model continuous and discrete phase-type distributions, both univariate and multivariate. The package includes functions for outputting the mean and (co)variance of phase-type distributions; their density, probability and quantile functions; functions for random draws; functions for reward-transformation; and functions for plotting the distributions as networks.

Installation

You can install PhaseTypeR from CRAN via:

install.packages("PhaseTypeR")

If you install devtools in your R environment with install.packages("devtools"), the development version of the package can be installed with the following command:

devtools::install_github("rivasiker/PhaseTypeR")

Basic example

This is a basic example for the univariate continuous phase-type distribution.

# Load the package
library(PhaseTypeR)

# Define the sub-intensity rate matrix
subintensity_matrix <- matrix(c(-1.5,  0,  0,
                                 1.5, -1,  0,
                                  0,   1, -0.5), ncol = 3)
# Define the initial probabilities
initial_probabilities <- c(0.9, 0.1, 0)

# Create continuous phase-type object
ph <- PH(subintensity_matrix, initial_probabilities)

Summary of the object:

summary(ph)
#> 
#> Subintensity matrix:
#>      [,1] [,2] [,3]
#> [1,] -1.5  1.5  0.0
#> [2,]  0.0 -1.0  1.0
#> [3,]  0.0  0.0 -0.5
#> 
#> Initial probabilities:
#>      [,1] [,2] [,3]
#> [1,]  0.9  0.1    0
#> 
#> Defect:
#> [1] 0
#> 
#> Mean: 3.6
#> 
#> Variance: 5.44

Density function:

dPH(1:5, ph)
#> [1] 0.1506327 0.2216989 0.1991321 0.1482987 0.1009037

Cumulative density function:

pPH(1:5, ph)
#> [1] 0.07030638 0.26728005 0.48232823 0.65658059 0.78032198

Quantile function:

qPH(c(0.25, 0.5, 0.75), ph)
#> [1] 1.921862 3.089664 4.716588

Random sampling:

set.seed(0)
rPH(6, ph)
#> [1] 4.648661 6.111533 4.586241 5.708529 8.354549 5.768456

Learn more

You can check out the full functionality of PhaseTypeR and its application to population genetics in the following guides:

Metadata

Version

1.0.4

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows