MyNixOS website logo
Description

Sensitivity Analysis for Publication Bias in Meta-Analyses.

Performs sensitivity analysis for publication bias in meta-analyses (per Mathur & VanderWeele, 2020 [<doi:10.31219/osf.io/s9dp6>]). These analyses enable statements such as: "For publication bias to shift the observed point estimate to the null, 'significant' results would need to be at least 30-fold more likely to be published than negative or 'nonsignificant' results." Comparable statements can be made regarding shifting to a chosen non-null value or shifting the confidence interval. Provides a worst-case meta-analytic point estimate under maximal publication bias obtained simply by conducting a standard meta-analysis of only the negative and "nonsignificant" studies.

PublicationBias

R-CMD-check

PublicationBias is an R package that provides bias correction and sensitivity analysis for publication bias in meta-analyses (per Mathur & VanderWeele, 2020).

Installation

You can install PublicationBias from CRAN with:

install.packages("PublicationBias")

You can install the development version of PublicationBias from GitHub with:

# install.packages("devtools")
devtools::install_github("mathurlabstanford/PublicationBias")

Example

Start by generating some example data from the metafor package.

library(PublicationBias)
dat <- metafor::escalc(measure = "RR", ai = tpos, bi = tneg, ci = cpos,
                       di = cneg, data = dat.bcg)

Calculate the meta-analytic effect size estimate, correcting for an assumed selection ratio of 5 (i.e., affirmative results are 5x more likely to be published than nonaffirmative ones).

pubbias_meta(yi = dat$yi, vi = dat$vi, selection_ratio = 5,
             model_type = "fixed", favor_positive = FALSE)

Calculate how high the selection ratio would need to be to attenuate the effect size estimate to the null.

pubbias_svalue(yi = dat$yi, vi = dat$vi, q = 0,
               model_type = "fixed", favor_positive = FALSE)
Metadata

Version

2.4.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows