MyNixOS website logo
Description

R Wrapper for the 'Climacell' API.

'Climacell' is a weather platform that provides hyper-local forecasts and weather data. This package enables the user to query the core layers of the time line interface of the 'Climacell' v4 API <https://www.climacell.co/weather-api/>. This package requires a valid API key. See vignettes for instructions on use.

RClimacell

Lifecycle:experimental License:MIT GitHubcommit R-CMD-check CRANstatus

The {RClimacell} package is an unofficial R package that enables basic interaction with Climacell’s API using the Timeline Interface. The functions within this package are tested against some of the Core data layers.

Please note that using the functions within this package require a valid API key.

More information about the Climacell API can be found on their docs page.

Lubridate Issue

As of 24 Feb, there is a known issue with using the package {lubridate} and it seems to be affecting macOS users. The ‘fix’ has been to add the following line to the .Renviron file or the .Rprofile (I applied the code into the .Renviron file and it worked):

TZDIR="/Library/Frameworks/R.framework/Resources/share/zoneinfo/"

{lubridate} version 1.7.10 fixes this issue and is available on CRAN.

Installation

CRAN version can be installed as follows:

install.packages('RClimacell')

You can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("nikdata/RClimacell")

Usage

Not every variable in each of the functions will have a value. Missing values are denoted by NA and indicate that the API did not return a value for the specific date/time and function call.

Temperature

library(RClimacell)
climacell_temperature(api_key = Sys.getenv("CLIMACELL_API"),
                      lat = 41.878685,
                      long = -87.636011,
                      timestep = '1d',
                      start_time = lubridate::now(),
                      end_time = lubridate::now() + lubridate::days(3))
#> # A tibble: 4 x 5
#>   start_time          temp_c temp_feel_c dewpoint humidity
#>   <dttm>               <dbl>       <dbl>    <dbl>    <dbl>
#> 1 2021-03-22 11:00:00  18.3        18.2      5.88     62.1
#> 2 2021-03-23 11:00:00  14.1        14.1     10.5      97.0
#> 3 2021-03-24 11:00:00  14.2        14.2     10.1      97.3
#> 4 2021-03-25 11:00:00   7.26        7.26     4.94     92.3

Wind

library(RClimacell)
climacell_wind(api_key = Sys.getenv("CLIMACELL_API"),
               lat = 41.878685,
               long = -87.636011,
               timestep = '1d',
               start_time = lubridate::now(),
               end_time = lubridate::now() + lubridate::days(3))
#> # A tibble: 4 x 4
#>   start_time          wind_speed wind_gust wind_direction
#>   <dttm>                   <dbl>     <dbl>          <dbl>
#> 1 2021-03-22 11:00:00       6.46      9.12          190. 
#> 2 2021-03-23 11:00:00       9.77     13.9           143. 
#> 3 2021-03-24 11:00:00      10.7      15.4           225. 
#> 4 2021-03-25 11:00:00       6.77      9.31           95.1

Precipitation

library(RClimacell)
df_precip <- climacell_precip(api_key = Sys.getenv("CLIMACELL_API"),
                 lat = 41.878685,
                 long = -87.636011,
                 timestep = '1h',
                 start_time = lubridate::now(),
                 end_time = lubridate::now() + lubridate::days(3))

dplyr::glimpse(df_precip)
#> Rows: 73
#> Columns: 14
#> $ start_time                <dttm> 2021-03-22 22:00:00, 2021-03-22 23:00:00, 2…
#> $ precipitation_intensity   <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
#> $ precipitation_probability <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
#> $ precipitation_type_code   <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
#> $ precipitation_type_desc   <chr> "Rain", "Rain", "Rain", "Rain", "Rain", "Rai…
#> $ visibility                <dbl> 10.00, 16.00, 16.00, 16.00, 16.00, 16.00, 16…
#> $ pressure_surface_level    <dbl> 997.45, 996.97, 997.25, 997.07, 997.85, 998.…
#> $ pressure_sea_level        <dbl> 1015.03, 1015.30, 1015.48, 1015.25, 1016.09,…
#> $ cloud_cover               <dbl> 21.43, 82.86, 100.00, 100.00, 100.00, 100.00…
#> $ cloud_base                <dbl> NA, 7.36, 1.03, 0.74, 0.57, 7.77, 6.67, 6.67…
#> $ cloud_ceiling             <dbl> NA, NA, 9.58, 9.19, 8.64, 7.64, 6.66, 6.53, …
#> $ solar_ghi                 <dbl> 247.85, 139.36, 0.00, 0.00, 0.00, 0.00, 0.00…
#> $ weather_code              <dbl> 1100, 1001, 1001, 1001, 1001, 1001, 1001, 10…
#> $ weather_desc              <chr> "Mostly Clear", "Cloudy", "Cloudy", "Cloudy"…

Celestial (sunset time, sunrise time, and moon phase)

library(RClimacell)
df_celestial <- climacell_celestial(api_key = Sys.getenv("CLIMACELL_API"),
                 lat = 41.878685,
                 long = -87.636011,
                 timestep = '1d',
                 start_time = lubridate::now(),
                 end_time = lubridate::now() + lubridate::days(5))

dplyr::glimpse(df_celestial)
#> Rows: 6
#> Columns: 5
#> $ start_time             <dttm> 2021-03-22 11:00:00, 2021-03-23 11:00:00, 2021…
#> $ sunrise_time           <dttm> 2021-03-22 11:50:00, 2021-03-23 11:48:20, 2021…
#> $ sunset_time            <dttm> 2021-03-23 00:05:00, 2021-03-24 00:06:40, 2021…
#> $ moon_phase_code        <int> 2, 2, 2, 2, 3, 4
#> $ moon_phase_description <chr> "First Quarter", "First Quarter", "First Quarte…

Climacell Core (all Core Layer data)

This function aims to retrieve all of the Core Layer data using the Timeline Interface. All of the data are retrieved in a single API call. Note that if the timestep is not ‘1d’, then the moon phase, sunrise time, and sunset times will not be available

library(RClimacell)
df_core <- climacell_core(api_key = Sys.getenv("CLIMACELL_API"),
                 lat = 41.878685,
                 long = -87.636011,
                 timestep = '1m',
                 start_time = lubridate::now(),
                 end_time = lubridate::now() + lubridate::hours(3))
#> Moonphase, Sunrise Time, and Sunset Times are only available if timestep is '1d'.

dplyr::glimpse(df_core)
#> Rows: 181
#> Columns: 21
#> $ start_time                <dttm> 2021-03-22 22:00:00, 2021-03-22 22:01:00, 2…
#> $ temp_c                    <dbl> 16.11, 16.11, 16.11, 16.11, 16.11, 16.11, 16…
#> $ temp_feel_c               <dbl> 17.81, 17.82, 17.83, 17.83, 17.84, 17.85, 17…
#> $ weather_code              <dbl> 1100, 1100, 1100, 1100, 1100, 1100, 1100, 11…
#> $ weather_desc              <chr> "Mostly Clear", "Mostly Clear", "Mostly Clea…
#> $ dewpoint                  <dbl> 4.08, 4.08, 4.08, 4.08, 4.08, 4.08, 4.09, 4.…
#> $ humidity                  <dbl> 45.00, 45.00, 45.00, 45.00, 45.00, 45.00, 45…
#> $ wind_speed                <dbl> 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.…
#> $ wind_direction            <dbl> 106, 106, 106, 106, 106, 106, 106, 106, 106,…
#> $ wind_gust                 <dbl> 1.78, 1.78, 1.78, 1.78, 1.78, 1.78, 1.79, 1.…
#> $ solar_ghi                 <dbl> 247.85, 246.04, 244.23, 242.42, 240.62, 238.…
#> $ precipitation_type_code   <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
#> $ precipitation_type_desc   <chr> "Rain", "Rain", "Rain", "Rain", "Rain", "Rai…
#> $ precipitation_probability <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
#> $ precipitation_intensity   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
#> $ cloud_cover               <dbl> 21.43, 21.43, 21.43, 21.43, 21.43, 21.43, 21…
#> $ cloud_base                <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
#> $ cloud_ceiling             <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
#> $ visibility                <dbl> 10.00, 10.00, 10.00, 10.00, 10.00, 10.00, 10…
#> $ pressure_surface_level    <dbl> 997.45, 997.44, 997.43, 997.42, 997.41, 997.…
#> $ pressure_sea_level        <dbl> 1015.03, 1015.03, 1015.03, 1015.03, 1015.03,…
library(RClimacell)
df_core2 <- climacell_core(api_key = Sys.getenv("CLIMACELL_API"),
                 lat = 41.878685,
                 long = -87.636011,
                 timestep = '1d',
                 start_time = lubridate::now(),
                 end_time = lubridate::now() + lubridate::days(5))

dplyr::glimpse(df_core2)
#> Rows: 6
#> Columns: 25
#> $ start_time                <dttm> 2021-03-22 11:00:00, 2021-03-23 11:00:00, 2…
#> $ temp_c                    <dbl> 18.22, 14.07, 14.18, 7.26, 2.57, 3.00
#> $ temp_feel_c               <dbl> 18.22, 14.07, 14.18, 7.26, -0.81, -0.95
#> $ weather_code              <dbl> 1102, 4200, 4000, 5001, 5001, 5100
#> $ weather_desc              <chr> "Mostly Cloudy", "Light Rain", "Drizzle", "F…
#> $ dewpoint                  <dbl> 5.88, 10.49, 10.07, 4.94, -1.81, 2.25
#> $ humidity                  <dbl> 62.11, 96.98, 97.27, 92.32, 74.93, 90.36
#> $ wind_speed                <dbl> 6.46, 9.77, 10.72, 9.75, 7.94, 4.69
#> $ wind_direction            <dbl> 187.73, 142.57, 224.78, 61.08, 148.06, 98.70
#> $ wind_gust                 <dbl> 9.12, 13.92, 15.36, 12.24, 9.84, 5.95
#> $ solar_ghi                 <dbl> 513.56, 540.69, 552.39, 557.51, 651.40, 137.…
#> $ precipitation_type_code   <dbl> 1, 1, 1, 2, 2, 2
#> $ precipitation_type_desc   <chr> "Rain", "Rain", "Rain", "Snow", "Snow", "Sno…
#> $ precipitation_probability <dbl> 0, 75, 25, 55, 20, 30
#> $ precipitation_intensity   <dbl> 0.0000, 2.7397, 0.3605, 0.4792, 0.0222, 0.57…
#> $ cloud_cover               <dbl> 100, 100, 100, 100, 100, 100
#> $ cloud_base                <dbl> 7.77, 2.68, 5.70, 5.86, 1.09, 2.18
#> $ cloud_ceiling             <dbl> 9.58, 8.31, 7.31, 8.26, 1.26, 3.35
#> $ visibility                <dbl> 16.00, 16.00, 16.00, 24.14, 24.14, 24.14
#> $ pressure_surface_level    <dbl> 999.40, 996.42, 990.88, 992.93, 1001.49, 999…
#> $ pressure_sea_level        <dbl> 1014.74, 1003.36, 1003.40, 1011.24, 1015.15,…
#> $ sunrise_time              <dttm> 2021-03-22 11:50:00, 2021-03-23 11:48:20, 20…
#> $ sunset_time               <dttm> 2021-03-23 00:05:00, 2021-03-24 00:06:40, 20…
#> $ moon_phase_code           <dbl> 2, 2, 2, 2, 3, 4
#> $ moon_phase_description    <chr> "First Quarter", "First Quarter", "First Qua…

See the vignette for more information.

Metadata

Version

0.1.4

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows