Description
Significance Level for Random Forest Impurity Importance Scores.
Description
Sets a significance level for Random Forest MDI (Mean Decrease in Impurity, Gini or sum of squares) variable importance scores, using an empirical Bayes approach. See Dunne et al. (2022) <doi:10.1101/2022.04.06.487300>.
README.md
RFlocalfdr
Provides a method for setting the significance level of the MDI (mean decrease in impurity) importances from a random forest model. Based on an empirical Bayes model. See https://www.biorxiv.org/content/10.1101/2022.04.06.487300v2 Thresholding Gini Variable Importance with a single trained Random Forest: An Empirical Bayes Approach (Robert Dunne, Roc Reguant, Priya Ramarao-Milne, Piotr Szul, Letitia Sng, Mischa Lundberg, Natalie A. Twine, Denis C. Bauer) for full details.
Until I figure out how to manage the cran repository:
- the data sets are not available in the cran version
- many of the examples are enclosed in "dontrun" environments
Install devtools from CRAN
install.packages("RFlocalfdr")
Or from GitHub:
devtools::install_github("parsifal9/RFlocalfdr", build_vignettes = TRUE)
Usage
library(RFlocalfdr)
vignette("simulated",package="RFlocalfdr")
vignette("Smoking",package="RFlocalfdr")
License
GNU General Public License.