MyNixOS website logo
Description

Concentration-Response Data Analysis using Curvep.

An R interface for processing concentration-response datasets using Curvep, a response noise filtering algorithm. The algorithm was described in the publications (Sedykh A et al. (2011) <doi:10.1289/ehp.1002476> and Sedykh A (2016) <doi:10.1007/978-1-4939-6346-1_14>). Other parametric fitting approaches (e.g., Hill equation) are also adopted for ease of comparison. 3-parameter Hill equation from 'tcpl' package (Filer D et al., <doi:10.1093/bioinformatics/btw680>) and 4-parameter Hill equation from Curve Class2 approach (Wang Y et al., <doi:10.2174/1875397301004010057>) are available. Also, methods for calculating the confidence interval around the activity metrics are also provided. The methods are based on the bootstrap approach to simulate the datasets (Hsieh J-H et al. <doi:10.1093/toxsci/kfy258>). The simulated datasets can be used to derive the baseline noise threshold in an assay endpoint. This threshold is critical in the toxicological studies to derive the point-of-departure (POD).

R-CMD-check

Overview

The package provides an R interface for processing concentration-response datasets using Curvep, a response noise filtering algorithm. The algorithm was described in the publications (Sedykh A et al. (2011) doi:10.1289/ehp.1002476 and Sedykh A (2016) doi:10.1007/978-1-4939-6346-1_14).

Other parametric fitting approaches (e.g., Hill equation) are also adopted for ease of comparison. 3-parameter Hill equation from original tcpl package (Filer DL et al., doi:10.1093/bioinformatics/btw680) and 4-parameter Hill equation from Curve Class2 approach (Wang Y et al., doi:10.2174/1875397301004010057) are available.

Also, methods for calculating the confidence interval around the activity metrics are also provided. The methods are based on the bootstrap approach to simulate the datasets (Hsieh J-H et al. doi:10.1093/toxsci/kfy258). The simulated datasets can be used to derive the baseline noise threshold in an assay endpoint. This threshold is critical in the toxicological studies to derive the point-of-departure (POD).

Installation

# the development version from GitHub:
# install.packages("devtools")
devtools::install_github("moggces/Rcurvep")
devtools::install_github("moggces/Rcurvep", dependencies = TRUE, build_vignettes = TRUE)

Package structure

Usage

Run analysis

library(Rcurvep)
data("zfishbeh")
out_curvep <- combi_run_rcurvep(zfishbeh, TRSH = 30)  # using Curvep with BMR = 30
out_fit1 <- run_fit(zfishbeh, modls = "cc2") # using Curve Class2 4-parameter hill
out_fit2 <- run_fit(zfishbeh, modls = c("cnst", "hill")) # using tcpl 3-parameter hill + constant model

Find BMR

data("zfishdev_act")
out_bmr <- estimate_dataset_bmr(zfishdev_act)
## $`1`

More Usage

To learn more about Rcurvep, start with the vignettes: browseVignettes(package = "Rcurvep")

Metadata

Version

1.3.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows