Description
Powerful Replicability Analysis of Genome-Wide Association Studies.
Description
A robust and powerful approach is developed for replicability analysis of two Genome-wide association studies (GWASs) accounting for the linkage disequilibrium (LD) among genetic variants. The LD structure in two GWASs is captured by a four-state hidden Markov model (HMM). The unknowns involved in the HMM are estimated by an efficient expectation-maximization (EM) algorithm in combination with a non-parametric estimation of functions. By incorporating information from adjacent locations via the HMM, this approach identifies the entire clusters of genotype-phenotype associated signals, improving the power of replicability analysis while effectively controlling the false discovery rate.