MyNixOS website logo
Description

Calculate Regional Consistency Probabilities for Multi-Regional Clinical Trials.

Provides methods to calculate approximate regional consistency probabilities using Method 1 and Method 2 proposed by the Japanese Ministry of Health, Labor and Welfare (2007) <https://www.pmda.go.jp/files/000153265.pdf>. These methods are useful for assessing regional consistency in multi-regional clinical trials. The package can calculate unconditional, joint, and conditional regional consistency probabilities. For technical details, please see Homma (2024) <doi:10.1002/pst.2358>.

RegionalConsistency

Overview

RegionalConsistency is an R package that calculates approximate regional consistency probabilities for multi-regional clinical trials using methods proposed by the Japanese Ministry of Health, Labor and Welfare (2007). The package implements both Method 1 and Method 2 approaches and can calculate:

  1. Unconditional regional consistency probabilities
  2. Joint regional consistency probabilities
  3. Conditional regional consistency probabilities

For technical details about the methodology, please refer to Homma (2024).

Installation

You can install the development version of RegionalConsistency from GitHub with:

# install.packages("devtools")
devtools::install_github("gosukehommaEX/RegionalConsistency")

Usage

library(RegionalConsistency)


# Calculate regional consistency probabilities
result <- regional.consistency.probs(
  f.s = c(0.1, 0.45, 0.45),  # Proportion of patients in each region
  PI = 0.5,                  # Threshold for Method 1
  alpha = 0.025,             # One-sided significance level
  power = 0.8,               # Target power
  seed = 123                 # Seed for reproducibility
)


# View results
print(result)

References

Homma, G. (2024). Cautionary note on regional consistency evaluation in multi-regional clinical trials with binary outcomes. Pharmaceutical Statistics, https://doi.org/10.1002/pst.2358.

Ministry of Health, Labor and Welfare (2007). Basic principles on global clinical trials, https://www.pmda.go.jp/files/000153265.pdf.

Metadata

Version

1.0.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows