MyNixOS website logo
Description

Interface to the Numerai Machine Learning Tournament API.

Routines to interact with the Numerai Machine Learning Tournament API <https://numer.ai>. The functionality includes the ability to automatically download the current tournament data, submit predictions, and to get information for your user.

Travis-CI Build Status

Rnumerai

R Interface to the Numerai Machine Learning Tournament API

This interface allows download of tournament data, submit predictions, get user information, stake NMR's and much more. Using the functions from this package end user can write R code to automate the whole procedure related to numerai tournament.

If you encounter a problem or have suggestions, feel free to open an issue.


Installation

  • For the latest development release:
devtools::install_github("Omni-Analytics-Group/Rnumerai")
  • For the latest stable release:
install.packages("Rnumerai")

Documentation Jump


Basic functions to perform tasks other than automating submissions

1. Load the package.

library(Rnumerai)

2. Set Public Key and Secret API key variables.

Get your public key and api key by going to numer.ai and then going to Custom API Keys section under your Account Tab. Select appropriate scopes to generate the key or select all scopes to use the full functionality of this package.

set_public_id("public_id_here")
set_api_key("api_key_here")

3. Get all information about your account

get_account()

3. Get all of your models in Main and Signal Tournament

  • For Main Tournament
get_models(tournament=8)
  • For Signals Tournament
get_models(tournament=11)

4. Get number of the current active round.

get_current_round()

5. Get info on rounds in Main and Signal Tournament

  • For Main Tournament
get_competitions(tournament=8)
  • For Signals Tournament
get_competitions(tournament=11)

6. Set Bio and Link Field for a Model Id

set_bio(model_id = get_models()[["bayo"]], bio = "This Model Rocks")
set_link(model_id = get_models()[["bayo"]], link = "https://www.google.com",link_text = "Google")

7. Get all transactions in your wallet.

wallet_transactions()

8. Set a model's submission webhook used in Numerai Compute.

set_submission_webhook(model_id = get_models()[["bayo"]], webhook = "..")

9. Fetch round's model performance of any user

  • For Main Tournament
round_model_performances(username = "bayo",tournament=8)
  • For Signals Tournament
round_model_performances(username = "bayo",tournament=11)

10. Fetch Daily model performance of any user

  • For Main Tournament
daily_model_performances(username = "bayo",tournament=8)
  • For Signals Tournament
daily_model_performances(username = "bayo",tournament=11)

11. Fetch Daily submission performance of any user

  • For Main Tournament
daily_submission_performances(username = "bayo",tournament=8)
  • For Signals Tournament
daily_submission_performances(username = "bayo",tournament=11)

12. Get Leaderboard

  • For Main Tournament
get_leaderboard(tournament=8)
  • For Signals Tournament
get_leaderboard(tournament=11)

13. Submission status of the last submission associated with the account

  • For Main Tournament
model_id = get_models(tournament=8)[["bayo"]]
submission_status(model_id = model_id, tournament=8)
  • For Signals Tournament
model_id = get_models(tournament=11)[["test5678"]]
submission_status(model_id = model_id, tournament=11)

14. Run a custom query

run_query(query = 'query{account{username}}', auth=TRUE)
run_query(query = 'query{rounds{number,closeTime}}', auth=FALSE)

Automatic submission using this package (Main Competition)

1. Load the package.

library(Rnumerai)

2. Set Public Key and Secret API key variables.

Get your public key and api key by going to numer.ai and then going to Custom API Keys section under your Account Tab. Select appropriate scopes to generate the key or select all scopes to use the full functionality of this package.

set_public_id("public_id_here")
set_api_key("api_key_here")

3. List the datasets for current round

list_datasets()

4A. For V2 Data (Released in late 2019), Download Train, Validation and Live data and submit predictions

  • Download
download_dataset("v2/numerai_datasets.zip", "numerai_datasets.zip")
download_dataset("v2/numerai_live_data.parquet", "numerai_live_data.parquet")
  • Load in R
unzip("numerai_datasets.zip",overwrite = TRUE, list = FALSE)
data_train <- read.csv("numerai_training_data.csv")
data_tournament <- read.csv("numerai_tournament_data.csv")
data_live <- data.table::setDT(arrow::read_parquet("numerai_live_data.parquet"))
  • Make Dummy Prediction and submit
predictions <- data.frame(id=data_live$id,prediction=sample(400:600,nrow(data_live),replace=TRUE)/1000)
upload_predictions(model_id = get_models()[["bayo"]],df=predictions)

4B. For V3 Data (Released in September of 2021), Download Train, Validation and Live data and submit predictions

  • Download
download_dataset("v3/numerai_training_data.parquet", "numerai_training_data.parquet")
download_dataset("v3/numerai_validation_data.parquet", "numerai_validation_data.parquet")
download_dataset("v3/numerai_live_data.parquet", "numerai_live_data.parquet")
download_dataset("v3/numerai_datasets.zip", "numerai_datasets.zip")
  • Load in R
data_train <- data.table::setDT(arrow::read_parquet("numerai_training_data.parquet"))
data_validation <- data.table::setDT(arrow::read_parquet("numerai_validation_data.parquet"))
data_live <- data.table::setDT(arrow::read_parquet("numerai_live_data.parquet"))
  • Make Dummy Prediction and submit
predictions <- data.frame(id=data_live$id,prediction=sample(400:600,nrow(data_live),replace=TRUE)/1000)
upload_predictions(model_id = get_models()[["bayo"]],df=predictions)
  • Make Dummy Diagnostics and submit
diagnostics <- data.frame(id=data_validation$id,prediction=sample(400:600,nrow(data_validation),replace=TRUE)/1000)
diagnostics_id <- upload_diagnostics(model_id = get_models()[["bayo"]],df=diagnostics)
diagnostics(model_id = get_models()[["bayo"]],diagnostics_id=diagnostics_id)

4C. For V4 Data (Released in April of 2022), Download Train, Validation and Live data and submit predictions

  • Download
download_dataset("v4/train.parquet", "train.parquet")
download_dataset("v4/validation.parquet", "validation.parquet")
download_dataset("v4/live.parquet", "live.parquet")
download_dataset("v4/live_example_preds.parquet", "live_example_preds.parquet")
download_dataset("v4/validation_example_preds.parquet", "validation_example_preds.parquet")
download_dataset("v4/features.json", "features.json")
  • Load in R
data_train <- data.table::setDT(arrow::read_parquet("train.parquet"))
data_validation <- data.table::setDT(arrow::read_parquet("validation.parquet"))
data_live <- data.table::setDT(arrow::read_parquet("live.parquet"))
  • Make Dummy Prediction and submit
predictions <- data.frame(id=data_live$id,prediction=sample(400:600,nrow(data_live),replace=TRUE)/1000)
upload_predictions(model_id = get_models()[["bayo"]],df=predictions)
  • Make Dummy Diagnostics and submit
diagnostic_preds <- data.frame(id=data_validation$id,prediction=sample(400:600,nrow(data_validation),replace=TRUE)/1000)
diagnostics_id <- upload_diagnostics(model_id = get_models()[["bayo"]],df=diagnostic_preds)
diagnostics(model_id = get_models()[["bayo"]],diagnostics_id=diagnostics_id)

5. Change your stake

  • Increase
stake_change(nmr=.01,action="increase",model_id = get_models()[["bayo"]])
  • Decrease
stake_change(nmr=.01,action="decrease",model_id = get_models()[["bayo"]])
  • Change Stake Type
set_stake_type(model_id = get_models()[["bayo"]],corr_multiplier=1,tc_multiplier=2,tournament=8)

Automatic submission using this package (Signals Competition)

1. Load the package.

library(Rnumerai)

2. Set Public Key and Secret API key variables.

Get your public key and api key by going to numer.ai and then going to Custom API Keys section under your Account Tab. Select appropriate scopes to generate the key or select all scopes to use the full functionality of this package.

set_public_id("public_id_here")
set_api_key("api_key_here")

3. Download the ticker universe.

tickers <- ticker_universe()

4. Make Dummy Predictions and submit

predictions <- cbind(tickers,signal = sample(400:600,nrow(tickers),replace=TRUE)/1000)
upload_predictions(model_id = get_models(tournament=11)[["test5678"]],df=predictions,tournament=11)

5. Make Dummy Diagnostics and submit

download_validation_data(file_path = "signals_historical_targets.csv")
data_validation <- read.csv("signals_historical_targets.csv")
data_validation <- data_validation[sample(1:nrow(data_validation),1000),1:3]
data_validation$data_type <- "validation"
diagnostic_preds <- cbind(data_validation,signal = sample(400:600,nrow(data_validation),replace=TRUE)/1000)
diagnostics_id <- upload_diagnostics(model_id = get_models(tournament=11)[["test5678"]],df=diagnostic_preds,tournament=11)
diagnostics(model_id = get_models(tournament=11)[["test5678"]],tournament=11,diagnostics_id=diagnostics_id)

6. Change your stake

  • Increase
stake_change(nmr=.01,action="increase",tournament=11,model_id = get_models(tournament=11)[["test5678"]])
  • Decrease
stake_change(nmr=.01,action="decrease",tournament=11,model_id = get_models(tournament=11)[["test5678"]])
  • Change Stake Type
set_stake_type(model_id = get_models(tournament=11)[["test5678"]],corr_multiplier=1,tc_multiplier=2,tournament=11)
Metadata

Version

3.0.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows