MyNixOS website logo
Description
Robust Mixture Regression
Finite mixture models are a popular technique for modelling unobserved heterogeneity or to approximate general distribution functions in a semi-parametric way. They are used in a lot of different areas such as astronomy, biology, economics, marketing or medicine. This package is the implementation of popular robust mixture regression methods based on different algorithms including: fleximix, finite mixture models and latent class regression; CTLERob, component-wise adaptive trimming likelihood estimation; mixbi, bi-square estimation; mixL, Laplacian distribution; mixt, t-distribution; TLE, trimmed likelihood estimation. The implemented algorithms includes: CTLERob stands for Component-wise adaptive Trimming Likelihood Estimation based mixture regression; mixbi stands for mixture regression based on bi-square estimation; mixLstands for mixture regression based on Laplacian distribution; TLE stands for Trimmed Likelihood Estimation based mixture regression. For more detail of the algorithms, please refer to below references. Reference: Chun Yu, Weixin Yao, Kun Chen (2017) <doi:10.1002/cjs.11310>. NeyKov N, Filzmoser P, Dimova R et al. (2007) <doi:10.1016/j.csda.2006.12.024>. Bai X, Yao W. Boyer JE (2012) <doi:10.1016/j.csda.2012.01.016>. Wennan Chang, Xinyu Zhou, Yong Zang, Chi Zhang, Sha Cao (2020) <arXiv:2005.11599>.

Robust Mixture Regression

License CRAN_Status_Badge cran checks Total Downloads documentation travis Hi

Install from CRAN

install.packages("RobMixReg)
library("RobMixReg")

Install from github for most updated package.

Please report the bug as the description in the Question&Problem.

library("devtools")
devtools::install_github("changwn/RobMixReg")

Tutorial

A comprehensive and complete tutorial is here.

News

The package version control is in News.md

Citations

If you find the code helpful in your resarch or work, please cite us.

@article{wennan2020cat,
  title={A New Algorithm using Component-wise Adaptive Trimming For Robust Mixture Regression},
  author={Chang, Wennan and Wan, Changlin and Zhou, Xinyu and Zhang, Chi and Cao, Sha},
  journal={arXiv preprint arXiv:2005.11599},
  year={2020}
}

@article{chang2020supervised,
  title={Supervised clustering of high dimensional data using regularized mixture modeling},
  author={Chang, Wennan and Wan, Changlin and Zang, Yong and Zhang, Chi and Cao, Sha},
  journal={arXiv preprint arXiv:2007.09720},
  year={2020}
}

Questions & Problems

If you have any questions or problems, please feel free to open a new issue here. We will fix the new issue ASAP. You can also email the maintainers and authors below.

PhD candidate at Biomedical Data Research Lab (BDRL) , Indiana University School of Medicine.

Metadata

Version

1.1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows