MyNixOS website logo
Description

Selection and Misclassification Bias Adjustment for Logistic Regression Models.

Health research using data from electronic health records (EHR) has gained popularity, but misclassification of EHR-derived disease status and lack of representativeness of the study sample can result in substantial bias in effect estimates and can impact power and type I error for association tests. Here, the assumed target of inference is the relationship between binary disease status and predictors modeled using a logistic regression model. 'SAMBA' implements several methods for obtaining bias-corrected point estimates along with valid standard errors as proposed in Beesley and Mukherjee (2020) <doi:10.1101/2019.12.26.19015859>, currently under review.

GithubVersion TravisCI

SAMBA

Health research using data from electronic health records (EHR) has gained popularity, but misclassification of EHR-derived disease status and lack of representativeness of the study sample can result in substantial bias in effect estimates and can impact power and type I error for association tests. Here, the assumed target of inference is the relationship between binary disease status and predictors modeled using a logistic regression model. SAMBA implements several methods for obtaining bias-corrected point estimates along with valid standard errors as proposed in Beesley and Mukherjee (2020), currently under review.

Installation

SAMBA can be downloaded from Github via the R Package devtools

devtools::install_github("umich-cphds/SAMBA", build_opts = c())

Vignette

Once you have SAMBA installed, you can type

vignette("UsingSAMBA")

in R to bring up a tutorial on SAMBA and how to use it.

Questions

For questions and comments about the implementation, please contact Alexander Rix ([email protected]). For questions about the method, contact Lauren Beesley ([email protected]).

Reference

Statistical inference for association studies using electronic health records: handling both selection bias and outcome misclassification Lauren J Beesley, Bhramar Mukherjee medRxiv 2019.12.26.19015859

Metadata

Version

0.9.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows