Description
Sorted L1 Penalized Estimation.
Description
Efficient implementations for Sorted L-One Penalized Estimation (SLOPE): generalized linear models regularized with the sorted L1-norm (Bogdan et al. 2015). Supported models include ordinary least-squares regression, binomial regression, multinomial regression, and Poisson regression. Both dense and sparse predictor matrices are supported. In addition, the package features predictor screening rules that enable fast and efficient solutions to high-dimensional problems.
README.md
SLOPE
Efficient implementations for Sorted L-One Penalized Estimation (SLOPE): generalized linear models regularized with the sorted L1-norm. There is support for ordinary least-squares regression, binomial regression, multinomial regression, and poisson regression, as well as both dense and sparse predictor matrices. In addition, the package features predictor screening rules that enable efficient solutions to high-dimensional problems.
Installation
You can install the current stable release from CRAN with
install.packages("SLOPE")
or the development version from GitHub with
# install.packages("remotes")
remotes::install_github("jolars/SLOPE")
Versioning
SLOPE uses semantic versioning.
Code of conduct
Please note that the ‘SLOPE’ project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.