MyNixOS website logo
Description

Bayesian Spatio-Temporal Analysis in Stream Networks.

Fits Bayesian spatio-temporal models and makes predictions on stream networks using the approach by Santos-Fernandez, Edgar, et al. (2022)."Bayesian spatio-temporal models for stream networks". <arXiv:2103.03538>. In these models, spatial dependence is captured using stream distance and flow connectivity, while temporal autocorrelation is modelled using vector autoregression methods.

SSNbayes

SSNbayes fits spatio-temporal stream network data using Bayesian inference in Stan.

Installation

You can install the released version of SSNbayes from CRAN with:

install.packages("SSNbayes")

And the development version from GitHub with:

devtools::install_github("EdgarSantos-Fernandez/SSNbayes")

See more details in the articles Santos-Fernandez, Hoef, et al. (2022) and Santos-Fernandez, Ver Hoef, et al. (2022)

Reproducible examples

These examples show the package in action:

  • kaggle.com/edsans/ssnbayes

  • kaggle.com/edsans/ssnbayes-simulated

Example of one of the outputs produced

Evolution of the Boise River exceedance probability:

Alt Text

References

Santos-Fernandez, Edgar, Jay M. Ver Hoef, James M. McGree, Daniel J. Isaak, Kerrie Mengersen, and Erin E. Peterson. 2022. “SSNbayes: An r Package for Bayesian Spatio-Temporal Modelling on Stream Networks.” arXiv. https://doi.org/10.48550/ARXIV.2202.07166.

Santos-Fernandez, Edgar, Jay M. Ver Hoef, Erin E. Peterson, James McGree, Daniel J. Isaak, and Kerrie Mengersen. 2022. “Bayesian Spatio-Temporal Models for Stream Networks.” Computational Statistics & Data Analysis 170: 107446. https://doi.org/https://doi.org/10.1016/j.csda.2022.107446.

Metadata

Version

0.0.3

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows