MyNixOS website logo
Description

High-Dimensional Spatial Covariate-Augmented Overdispersed Poisson Factor Model.

A spatial covariate-augmented overdispersed Poisson factor model is proposed to perform efficient latent representation learning method for high-dimensional large-scale spatial count data with additional covariates.

SpaCOAP

High-Dimensional Spatial Covariate-Augmented Overdispersed Poisson Factor Model

================================================================

We introduce an efficient latent representation learning approach tailored specifically for high-dimensional, large-scale spatial count data, incorporating additional covariates for enhanced performance. To model correlations among variables measured at a shared spatial location, we utilize a covariate-augmented overdispersed Poisson factor model. We distinguish between high-dimensional covariates sharing similar attributes and those serving as control variables to enrich the representation learning process. To capture the spatial dependency of each variable across different locations, we apply a conditional autoregressive model to the latent factors. Furthermore, we propose a variational expectation-maximization algorithm to estimate the model parameters and latent factors, imposing a low-rank constraint on the high-dimensional regression coefficient matrix.

Check out Package Website for a more complete description of the methods and analyses.

Installation

"SpaCOAP" depends on the 'Rcpp' and 'RcppArmadillo' package, which requires appropriate setup of computer. For the users that have set up system properly for compiling C++ files, the following installation command will work.

## Method 1:

if (!require("remotes", quietly = TRUE))
    install.packages("remotes")
remotes::install_github("feiyoung/SpaCOAP")

## Method 2: install from CRAN
install.packages("SpaCOAP")

Usage

For usage examples and guided walkthroughs, check the vignettes directory of the repo.

Simulated codes

For the codes in simulation study, check the simu_code directory of the repo.

News

SpaCOAP version 1.2 released! (2024-05-25)

Metadata

Version

1.2

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows