MyNixOS website logo
Description

Regularized Principal Component Analysis for Spatial Data.

Provide regularized principal component analysis incorporating smoothness, sparseness and orthogonality of eigen-functions by using the alternating direction method of multipliers algorithm (Wang and Huang, 2017, <DOI:10.1080/10618600.2016.1157483>). The method can be applied to either regularly or irregularly spaced data, including 1D, 2D, and 3D.

SpatPCA Package

R build status Coverage Status

Description

SpatPCA is an R package designed for efficient regularized principal component analysis, providing the following features:

  • Identification of dominant spatial patterns (eigenfunctions) with both smooth and localized characteristics.
  • Spatial prediction (Kriging) at new locations.
  • Adaptability for regularly or irregularly spaced data, spanning 1D, 2D, and 3D datasets.
  • Implementation using the alternating direction method of multipliers (ADMM) algorithm.

Installation

To install the current development version from GitHub, use the following R code:

remotes::install_github("egpivo/SpatPCA")

For compiling C++ code with the required RcppArmadillo and RcppParallel packages, follow these instructions:

  • Windows users: Install Rtools
  • Mac users: Install Xcode Command Line Tools, and install the gfortran library. You can achieve this by running the following commands in the terminal:
brew update
brew install gcc

For a detailed solution, refer to this link, or download and install the library gfortran to resolve the error ld: library not found for -lgfortran.

Usage

library(SpatPCA)
spatpca(position, realizations)
  • Input: Realizations with the corresponding positions.
  • Output: Return the most dominant eigenfunctions automatically.
  • For more details, refer to the Demo.

Author

Maintainer

Wen-Ting Wang

Reference

Wang, W.-T. and Huang, H.-C. (2017). Regularized principal component analysis for spatial data. Journal of Computational and Graphical Statistics, 26, 14-25.

License

GPL-3

Metadata

Version

1.3.5

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows