MyNixOS website logo
Description

Systematic Scenario Selection for Stress Testing.

Quasi-Monte-Carlo algorithm for systematic generation of shock scenarios from an arbitrary multivariate elliptical distribution. The algorithm selects a systematic mesh of arbitrary fineness that approximately evenly covers an isoprobability ellipsoid in d dimensions (Flood, Mark D. & Korenko, George G. (2013) <doi:10.1080/14697688.2014.926018>). This package is the 'R' analogy to the 'Matlab' code published by Flood & Korenko in above-mentioned paper.

SyScSelection

Quasi-Monte-Carlo algorithm for systematic generation of shock scenarios from an arbitrary multivariate elliptical distribution. The algorithm selects a systematic mesh of arbitrary fineness that approximately evenly covers an isoprobability ellipsoid in d dimensions.
(Flood, Mark D. & Korenko, George G. "Systematic Scenario Selection", Office of Financial Research Working Paper #0005, 2013)

Installation:

install.packages("devtools")
library(devtools)
install_github("mvk222/SyScSelection")
library(SyScSelection)

Usage:

Example ellipsodial mesh for a normal distribution:

  • Estimate the mean and covariance matrix from the data:
    mu <- colMeans(data)
    sig <- cov(data)

  • The number of dimensions, d, is taken directly from the data:
    d <- length(data[1,])

  • Get the size parameter for a normal dist’n at a 95% threshold:
    calpha <- sizeparam_normal_distn(.95, d)

  • Create a hyperellipsoid object. Note that the constructor takes the inverse of the disperion matrix:
    hellip <- hyperellipsoid(mu, solve(sig), calpha)

  • Scenarios are calculated as a mesh of fineness 3. The number of scenarios is a function of the dimensionality of the hyperellipsoid and the fineness of the mesh:
    scenarios <- hypercube_mesh(3, hellip)

Example ellipsodial mesh for a t distribution:

  • Estimate the mean, covariance, and degrees of freedom from the data:
    mu <- colMeans(data)
    sig <- cov(data)
    nu <- dim(data)[1] - 1

  • The number of dimensions, d, is taken directly from the data:
    d <- length(data[1,])

  • Get the size parameter for a normal dist’n at a 95% threshold:
    calpha <- sizeparam_t_distn(.95, d, nu)

  • Create a hyperellipsoid object. Note that the constructor takes the inverse of the disperion matrix:
    hellip <- hyperellipsoid(mu, solve(sig), calpha)

  • Scenarios are calculated as a mesh of fineness 3. The number of scenarios is a function of the dimensionality of the hyperellipsoid and the fineness of the mesh:
    scenarios <- hypercube_mesh(3, hellip)

Metadata

Version

1.0.2

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows