Description
Fitting Second-Order Tensor Data.
Description
An implementation of fitting generalized linear models on second-order tensor type data. The functions within this package mainly focus on parameter estimation, including parameter coefficients and standard deviation.
README.md
TensorTest2D
An implementation of fitting generalized linear models on second-order tensor type data. The functions within this package mainly focus on parameter estimation, including parameter coefficients and standard deviation.
Installation
git clone https://github.com/yuting1214/TensorTest2D
R CMD INSTALL TensorTest2D
or in R console window type the following
install.packages("TensorTest2D")
Quick start
library(TensorTest2D)
# Simulate data
n <- 500 # number of observations
n_P <- 3; n_G <- 64 # dimension of 3-D tensor variables.
n_d <- 1 # number of numerical variable, if n_d == 1, numerical variable equals to intercept.
beta_True <- rep(1, n_d)
B_True <- c(1,1,1)%*%t(rnorm(n_G)) + c(0, .5, .5)%*%t(rnorm(n_G))
B_True <- B_True / 10
W <- matrix(rnorm(n*n_d), n, n_d); W[,1] <- 1
X <- array(rnorm(n*n_P*n_G), dim=c(n_P, n_G, n))
## Regression Data
y_R<- as.vector(W%*%beta_True + X%hp%B_True + rnorm(n))
DATA_R <- list(y = y_R, X = X, W = W)
# Execution (Regression)
result_R <- tensorReg2D(y = DATA_R$y, X = DATA_R$X, W=NULL, n_R = 1, family = "gaussian",
opt = 1, max_ite = 100, tol = 10^(-7) )
# Visualization
image(B_True);image(result_R$B_EST)
head(predict(result_R, DATA_R$X))
Relevant Packages
- tensor: The tensor product of two arrays is notionally an outer product of the arrays collapsed in specific extents by summing along the appropriate diagonals.
- rTensor: Tools for Tensor Analysis and Decomposition
- tensorregress: Implement the alternating algorithm for supervised tensor decomposition with interactive side information.
Publications
- Ping-Yang Chen/Hsing-Ming Chang/Yu-Ting Chen/Jung-Ying Tzeng/Sheng-Mao Chang* (2022) ,TensorTest2D: Fitting Generalized Linear Models with Matrix Covariates,The R Journal,14,152-163,SSCI.