Wrangle and Modify Ts Object with Classic Frequencies and Exact Dates.
TractorTsbox
TractorTsbox est une boite à outils pour la manipulation des objets ts
en R.
La motivation pour la création de ce package est le fait que pour créer un objet ts
en R, il faut préciser la date sous le format $AAAA PP$ (avec $AAAA$ l’année en 4 chiffres et $PP$ le numéro de la période).
Par exemple, pour désigner le mois de septembre 2024, on utilise c(2024, 9)
et pour désigner le mois de janvier 2025 on peut écrire c(2025, 1)
ou 2025
.
Mais on peut aussi utiliser le time-units ($AAAA + PP / f$ avec $f$ la fréquence).
L’idée est d’uniformiser les dates avec un ensemble de fonction de conversion, de formattage mais aussi de modification des ts
.
Installation
You can install the development version of TractorTsbox from GitHub with:
# install.packages("remotes")
remotes::install_github("TractorTom/TractorTsbox")
Usage
library("TractorTsbox")
Converting Dates
- Convert a date from TimeUnits format to
date_ts
format:
as_yyyytt(2019.75) # 4th quarter 2019
#> [1] 2019 4
as_yyyytt(2020) # 1st quarter 2020
#> [1] 2020 1
as_yyyytt(2022 + 1 / 4) # 2nd quarter 2022
#> [1] 2022 2
- Convert a monthly date to a quarterly date:
trim2mens(c(2019L, 4L)) # 4th quarter 2019 -> October 2019
#> [1] 2019 10
mens2trim(c(2020L, 11L)) # November 2020 -> 4th quarter 2020
#> [1] 2020 4
Manipulating Dates
- Get the previous date:
previous_date_ts(c(2020L, 4L), frequency_ts = 4L, lag = 2L)
#> [1] 2020 2
- Get the next date:
next_date_ts(c(2020L, 4L), frequency_ts = 4L, lag = 2L)
#> [1] 2021 2
- Find the first non-NA date in a time series:
ts1 <- ts(c(NA, NA, NA, 1:10, NA), start = 2000, frequency = 12)
first_date(ts1)
#> [1] 2000 4
Data Retrieval and Modification
- Retrieve values from a time series:
ts1 <- ts(1:100, start = 2012L, frequency = 12L)
get_value_ts(series = ts1, date_from = c(2015L, 7L), date_to = c(2018L, 6L))
#> [1] 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
#> [26] 68 69 70 71 72 73 74 75 76 77 78
- Set values in a time series:
set_value_ts(series = ev_pib, date_ts = c(2021L, 2L), replacement = c(1, 2, 3))
#> Qtr1 Qtr2 Qtr3 Qtr4
#> 1970 NA NA NA NA
#> 1971 NA NA NA NA
#> 1972 NA NA NA NA
#> 1973 NA NA NA NA
#> 1974 NA NA NA NA
#> 1975 NA NA NA NA
#> 1976 NA NA NA NA
#> 1977 NA NA NA NA
#> 1978 NA NA NA NA
#> 1979 NA NA NA NA
#> 1980 NA -0.552712174 -0.086754850 -0.130764175
#> 1981 0.436797694 0.663555818 0.655755678 0.465977515
#> 1982 0.892058545 0.662204954 0.047370440 0.507157219
#> 1983 0.581233329 -0.042548981 0.077874681 0.583935348
#> 1984 0.619554314 0.363253711 0.462243113 0.288218891
#> 1985 0.123719710 0.631349292 0.756575266 0.327524429
#> 1986 0.357772133 1.122129272 0.326669036 0.370966439
#> 1987 0.251659155 1.144598588 0.680758053 1.694026185
#> 1988 1.231391234 0.593185145 1.302640709 1.065361026
#> 1989 1.260037978 0.825806743 1.075064005 1.523944130
#> 1990 0.517826385 0.377746880 0.459923112 0.366254003
#> 1991 -0.156699858 0.309591699 0.289346425 0.496079715
#> 1992 0.967856839 -0.057920191 0.028450027 -0.223321860
#> 1993 -0.556650909 0.039547303 0.133452547 0.269728893
#> 1994 0.725093411 1.095551160 0.539244435 0.886607198
#> 1995 0.569503181 0.478767111 0.081524147 0.164939274
#> 1996 0.631394447 0.165893251 0.621382576 0.125750143
#> 1997 0.302664793 1.148738446 0.785645124 1.092788520
#> 1998 0.838700519 0.933602781 0.685747514 0.764421531
#> 1999 0.504428016 0.825984551 1.222733930 1.401265205
#> 2000 0.909693692 0.987402187 0.624501289 0.812645817
#> 2001 0.547797973 0.184046964 0.272336544 0.026816438
#> 2002 0.372541324 0.461330701 0.418587141 -0.054011578
#> 2003 0.203235664 -0.218262571 0.676991816 0.717703853
#> 2004 0.939180093 0.645697044 0.258638250 0.744155119
#> 2005 0.269714193 0.198490900 0.500009124 0.776948575
#> 2006 0.754542470 1.015941519 0.013572258 0.786297420
#> 2007 0.740940215 0.773456477 0.351755993 0.225637214
#> 2008 0.395791727 -0.412315400 -0.280602493 -1.467532567
#> 2009 -1.632375943 -0.101454578 0.160750061 0.695136221
#> 2010 0.368232308 0.507493101 0.645610703 0.704301595
#> 2011 0.997901680 0.027941934 0.367134262 0.173618343
#> 2012 0.093557392 -0.157293866 0.191962538 -0.077204189
#> 2013 -0.001133455 0.655711072 0.012011561 0.475525630
#> 2014 0.084980333 0.118498226 0.504372721 0.081229345
#> 2015 0.489945372 0.007744848 0.332080732 0.139118865
#> 2016 0.636268205 -0.161024723 0.198728721 0.544690904
#> 2017 0.816780164 0.820053915 0.622880698 0.828202860
#> 2018 0.048700300 0.382559370 0.366396552 0.701164421
#> 2019 0.665798334 0.604099134 0.011971808 -0.400152537
#> 2020 -5.647477753 -13.443145590 18.555378962 -1.118046566
#> 2021 0.156198162 1.000000000 2.000000000 3.000000000
#> 2022 -0.047254400 NA NA
- Combine two time series:
trim_1 <- stats::ts(rep(1, 4), start = 2021, frequency = 4)
combine2ts(ev_pib, trim_1)
#> Qtr1 Qtr2 Qtr3 Qtr4
#> 1970 NA NA NA NA
#> 1971 NA NA NA NA
#> 1972 NA NA NA NA
#> 1973 NA NA NA NA
#> 1974 NA NA NA NA
#> 1975 NA NA NA NA
#> 1976 NA NA NA NA
#> 1977 NA NA NA NA
#> 1978 NA NA NA NA
#> 1979 NA NA NA NA
#> 1980 NA -0.552712174 -0.086754850 -0.130764175
#> 1981 0.436797694 0.663555818 0.655755678 0.465977515
#> 1982 0.892058545 0.662204954 0.047370440 0.507157219
#> 1983 0.581233329 -0.042548981 0.077874681 0.583935348
#> 1984 0.619554314 0.363253711 0.462243113 0.288218891
#> 1985 0.123719710 0.631349292 0.756575266 0.327524429
#> 1986 0.357772133 1.122129272 0.326669036 0.370966439
#> 1987 0.251659155 1.144598588 0.680758053 1.694026185
#> 1988 1.231391234 0.593185145 1.302640709 1.065361026
#> 1989 1.260037978 0.825806743 1.075064005 1.523944130
#> 1990 0.517826385 0.377746880 0.459923112 0.366254003
#> 1991 -0.156699858 0.309591699 0.289346425 0.496079715
#> 1992 0.967856839 -0.057920191 0.028450027 -0.223321860
#> 1993 -0.556650909 0.039547303 0.133452547 0.269728893
#> 1994 0.725093411 1.095551160 0.539244435 0.886607198
#> 1995 0.569503181 0.478767111 0.081524147 0.164939274
#> 1996 0.631394447 0.165893251 0.621382576 0.125750143
#> 1997 0.302664793 1.148738446 0.785645124 1.092788520
#> 1998 0.838700519 0.933602781 0.685747514 0.764421531
#> 1999 0.504428016 0.825984551 1.222733930 1.401265205
#> 2000 0.909693692 0.987402187 0.624501289 0.812645817
#> 2001 0.547797973 0.184046964 0.272336544 0.026816438
#> 2002 0.372541324 0.461330701 0.418587141 -0.054011578
#> 2003 0.203235664 -0.218262571 0.676991816 0.717703853
#> 2004 0.939180093 0.645697044 0.258638250 0.744155119
#> 2005 0.269714193 0.198490900 0.500009124 0.776948575
#> 2006 0.754542470 1.015941519 0.013572258 0.786297420
#> 2007 0.740940215 0.773456477 0.351755993 0.225637214
#> 2008 0.395791727 -0.412315400 -0.280602493 -1.467532567
#> 2009 -1.632375943 -0.101454578 0.160750061 0.695136221
#> 2010 0.368232308 0.507493101 0.645610703 0.704301595
#> 2011 0.997901680 0.027941934 0.367134262 0.173618343
#> 2012 0.093557392 -0.157293866 0.191962538 -0.077204189
#> 2013 -0.001133455 0.655711072 0.012011561 0.475525630
#> 2014 0.084980333 0.118498226 0.504372721 0.081229345
#> 2015 0.489945372 0.007744848 0.332080732 0.139118865
#> 2016 0.636268205 -0.161024723 0.198728721 0.544690904
#> 2017 0.816780164 0.820053915 0.622880698 0.828202860
#> 2018 0.048700300 0.382559370 0.366396552 0.701164421
#> 2019 0.665798334 0.604099134 0.011971808 -0.400152537
#> 2020 -5.647477753 -13.443145590 18.555378962 -1.118046566
#> 2021 1.000000000 1.000000000 1.000000000 1.000000000
#> 2022 -0.047254400 NA NA
- Extend a time series with new values:
ts1 <- ts(data = c(rep(NA_integer_, 3L), 1L:10L, rep(NA_integer_, 3L)), start = 2020, frequency = 12)
x <- rep(3L, 2L)
extend_ts(series = ts1, replacement = x)
#> Warning: extending time series when replacing values
#> Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
#> 2020 NA NA NA 1 2 3 4 5 6 7 8 9
#> 2021 10 3 3
Formatting and Labels
- Normalize a date:
normalize_date_ts(c(2020L, 0L), frequency_ts = 4L) # 4th quarter of 2019
#> Warning in assert_date_ts(x = date_ts, frequency_ts, add = coll, .var.name =
#> "date_ts"): Assertion on 'period' failed: Element 1 is not >= 1.
#> [1] 2019 4
normalize_date_ts(c(2020L, 0L), frequency_ts = 4L, test = FALSE) # 4th quarter of 2019
#> [1] 2019 4
- Generate labels for a period:
libelles(date_ts = c(2019L, 10L), frequency_ts = 12L, n = 9L)
#> [1] "Oct 2019" "Nov 2019" "Dec 2019" "Jan 2020" "Feb 2020" "Mar 2020" "Apr 2020"
#> [8] "May 2020" "Jun 2020"
Data Information
- Evolution of French GDP until Q1 2022:
ev_pib
#> Qtr1 Qtr2 Qtr3 Qtr4
#> 1970 NA NA NA NA
#> 1971 NA NA NA NA
#> 1972 NA NA NA NA
#> 1973 NA NA NA NA
#> 1974 NA NA NA NA
#> 1975 NA NA NA NA
#> 1976 NA NA NA NA
#> 1977 NA NA NA NA
#> 1978 NA NA NA NA
#> 1979 NA NA NA NA
#> 1980 NA -0.552712174 -0.086754850 -0.130764175
#> 1981 0.436797694 0.663555818 0.655755678 0.465977515
#> 1982 0.892058545 0.662204954 0.047370440 0.507157219
#> 1983 0.581233329 -0.042548981 0.077874681 0.583935348
#> 1984 0.619554314 0.363253711 0.462243113 0.288218891
#> 1985 0.123719710 0.631349292 0.756575266 0.327524429
#> 1986 0.357772133 1.122129272 0.326669036 0.370966439
#> 1987 0.251659155 1.144598588 0.680758053 1.694026185
#> 1988 1.231391234 0.593185145 1.302640709 1.065361026
#> 1989 1.260037978 0.825806743 1.075064005 1.523944130
#> 1990 0.517826385 0.377746880 0.459923112 0.366254003
#> 1991 -0.156699858 0.309591699 0.289346425 0.496079715
#> 1992 0.967856839 -0.057920191 0.028450027 -0.223321860
#> 1993 -0.556650909 0.039547303 0.133452547 0.269728893
#> 1994 0.725093411 1.095551160 0.539244435 0.886607198
#> 1995 0.569503181 0.478767111 0.081524147 0.164939274
#> 1996 0.631394447 0.165893251 0.621382576 0.125750143
#> 1997 0.302664793 1.148738446 0.785645124 1.092788520
#> 1998 0.838700519 0.933602781 0.685747514 0.764421531
#> 1999 0.504428016 0.825984551 1.222733930 1.401265205
#> 2000 0.909693692 0.987402187 0.624501289 0.812645817
#> 2001 0.547797973 0.184046964 0.272336544 0.026816438
#> 2002 0.372541324 0.461330701 0.418587141 -0.054011578
#> 2003 0.203235664 -0.218262571 0.676991816 0.717703853
#> 2004 0.939180093 0.645697044 0.258638250 0.744155119
#> 2005 0.269714193 0.198490900 0.500009124 0.776948575
#> 2006 0.754542470 1.015941519 0.013572258 0.786297420
#> 2007 0.740940215 0.773456477 0.351755993 0.225637214
#> 2008 0.395791727 -0.412315400 -0.280602493 -1.467532567
#> 2009 -1.632375943 -0.101454578 0.160750061 0.695136221
#> 2010 0.368232308 0.507493101 0.645610703 0.704301595
#> 2011 0.997901680 0.027941934 0.367134262 0.173618343
#> 2012 0.093557392 -0.157293866 0.191962538 -0.077204189
#> 2013 -0.001133455 0.655711072 0.012011561 0.475525630
#> 2014 0.084980333 0.118498226 0.504372721 0.081229345
#> 2015 0.489945372 0.007744848 0.332080732 0.139118865
#> 2016 0.636268205 -0.161024723 0.198728721 0.544690904
#> 2017 0.816780164 0.820053915 0.622880698 0.828202860
#> 2018 0.048700300 0.382559370 0.366396552 0.701164421
#> 2019 0.665798334 0.604099134 0.011971808 -0.400152537
#> 2020 -5.647477753 -13.443145590 18.555378962 -1.118046566
#> 2021 0.156198162 1.460529708 3.017719839 0.779781860
#> 2022 -0.047254400 NA NA