MyNixOS website logo
Description

Shrinkage Estimation Methods for Vector Autoregressive Models.

Vector autoregressive (VAR) model is a fundamental and effective approach for multivariate time series analysis. Shrinkage estimation methods can be applied to high-dimensional VAR models with dimensionality greater than the number of observations, contrary to the standard ordinary least squares method. This package is an integrative package delivering nonparametric, parametric, and semiparametric methods in a unified and consistent manner, such as the multivariate ridge regression in Golub, Heath, and Wahba (1979) <doi:10.2307/1268518>, a James-Stein type nonparametric shrinkage method in Opgen-Rhein and Strimmer (2007) <doi:10.1186/1471-2105-8-S2-S3>, and Bayesian estimation methods using noninformative and informative priors in Lee, Choi, and S.-H. Kim (2016) <doi:10.1016/j.csda.2016.03.007> and Ni and Sun (2005) <doi:10.1198/073500104000000622>.

VARshrink: Shrinkage Estimation Methods for Vector Autoregressive (VAR) Models.

VAR model is a fundamental and effective approach for multivariate time series analysis. Shrinkage estimation methods can be applied to high-dimensional VAR models with dimensionality greater than the number of observations, contrary to the standard ordinary least squares method.

The package VARshrink aims to be an integrative R package delivering nonparametric, parametric, and semiparametric methods in a unified and consistent manner.

The package VARshrink provides a simple interface function VARshrink(), which is an extension of the function VAR() in the vars package.

Example:

data(Canada, package = "vars")
y <- diff(Canada)
estim <- VARshrink(y, p = 2, type = "const", method = "ns")
plot(predict(estim), names = "U")

References

N. Lee, H. Choi, and S.-H. Kim (2016). Bayes shrinkage estimation for high-dimensional VAR models with scale mixture of normal distributions for noise. Computational Statistics & Data Analysis 101, 250-276. doi: 10.1016/j.csda.2016.03.007

S. Ni and D. Sun (2005). Bayesian estimates for vector autoregressive models. Journal of Business & Economic Statistics 23(1), 105-117. doi: 10.1198/073500104000000622

R. Opgen-Rhein and K. Strimmer (2007). Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics 8(2), S3. doi: 10.1186/1471-2105-8-S2-S3.

Metadata

Version

0.3.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows