MyNixOS website logo
Description

Measuring Copula-Based Dependence Between Random Vectors.

Provides functions for estimation (parametric, semi-parametric and non-parametric) of copula-based dependence coefficients between a finite collection of random vectors, including phi-dependence measures and Bures-Wasserstein dependence measures. An algorithm for agglomerative hierarchical variable clustering is also implemented. Following the articles De Keyser & Gijbels (2024) <doi:10.1016/j.jmva.2024.105336>, De Keyser & Gijbels (2024) <doi:10.1016/j.ijar.2023.109090>, and De Keyser & Gijbels (2024) <doi:10.48550/arXiv.2404.07141>.

VecDep

This R package gathers together several functions that can be used for copula-based measuring of dependence between a finite amount of random vectors.

In particular, several estimation procedures are implemented for the class of phi-dependence measures, including Gaussian copula and hierarchical Archimedean copula methods, as studied in

  • De Keyser, S. & Gijbels, I. (2024). Parametric dependence between random vectors via copula-based divergence measures. Journal of Multivariate Analysis 203:105336. doi: https://doi.org/10.1016/j.jmva.2024.105336,

and a semi-parametric meta-elliptical method and fully non-parametric methods, as investigated in

  • De Keyser, S. & Gijbels, I. (2024). Hierarchical variable clustering via copula-based divergence measures between random vectors. International Journal of Approximate Reasoning 165:109090. doi: https://doi.org/10.1016/j.ijar.2023.109090.

The latter reference also discusses an algorithm for hierarchical variable clustering based on multivariate similarities between random vectors, which is implemented in this R package as well. Next to this, functions for Bures-Wasserstein dependence coefficients and Gaussian copula correlation matrix penalization techniques, as discussed in

  • De Keyser, S. & Gijbels, I. (2024). High-dimensional copula-based Wasserstein dependence. doi: https://doi.org/10.48550/arXiv.2404.07141,

are implemented as well.

Metadata

Version

0.1.3

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows