MyNixOS website logo
Description

Adaptive P-Value Thresholding for Multiple Hypothesis Testing with Side Information.

Implementation of adaptive p-value thresholding (AdaPT), including both a framework that allows the user to specify any algorithm to learn local false discovery rate and a pool of convenient functions that implement specific algorithms. See Lei, Lihua and Fithian, William (2016) <arXiv:1609.06035>.

adaptMT

Build Status AppVeyor BuildStatus

Overview

This package implements Adaptive P-Value Thresholding in the paper: AdaPT: An interactive procedure for multiple testing with side information. It includes both a framework that allows the user to specify any algorithm to learn local FDR and a pool of convenient functions that implement specific algorithms:

  • adapt() provides a generic framework of AdaPT permitting any learning algorithm;
  • adapt_glm(), adapt_gam() and adapt_glmnet() provide convenient wrappers of AdaPT using Generalized Linear Models (GLM), Generalized Additive Models (GAM) and L1-penalized GLMs;

Install the adaptMT package then read vignette("adapt_demo", package = "adaptMT").

Installation

# install.packages("devtools")
devtools::install_github("lihualei71/adaptMT")

If one wants to access the vignette, run the following code to build the vignette. This might update other related packages and please be patient if so.

devtools::install_github("lihualei71/adaptMT", build_vignettes = TRUE)

An Example

We illustrate the usage of adaptMT package using the example discussed in Section 5.1 of the paper AdaPT: An interactive procedure for multiple testing with side information.

# Load package
library("adaptMT")

# Load data
data(estrogen)
pvals <- as.numeric(estrogen$pvals)
x <- data.frame(x = as.numeric(estrogen$ord_high))

# Define the exponential family for AdaPT (Section 4)
dist <- beta_family()

# Run adapt_glm
library("splines")
formulas <- paste0("ns(x, df = ", 6:10, ")")
res <- adapt_glm(x = x, pvals = pvals, pi_formulas = formulas,
                 mu_formulas = formulas, dist = dist, nfits = 10)

# Plot the threshold curve and the level curves of local FDR
plot_1d_thresh(res, alpha = 0.1, "P-Value Thresholds")
plot_1d_lfdr(res, alpha = 0.1, "Level Curves of Local FDR Estimates")
Metadata

Version

1.0.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows