MyNixOS website logo
Description

Tidy Anomaly Detection.

The 'anomalize' package enables a "tidy" workflow for detecting anomalies in data. The main functions are time_decompose(), anomalize(), and time_recompose(). When combined, it's quite simple to decompose time series, detect anomalies, and create bands separating the "normal" data from the anomalous data at scale (i.e. for multiple time series). Time series decomposition is used to remove trend and seasonal components via the time_decompose() function and methods include seasonal decomposition of time series by Loess ("stl") and seasonal decomposition by piecewise medians ("twitter"). The anomalize() function implements two methods for anomaly detection of residuals including using an inner quartile range ("iqr") and generalized extreme studentized deviation ("gesd"). These methods are based on those used in the 'forecast' package and the Twitter 'AnomalyDetection' package. Refer to the associated functions for specific references for these methods.

Anomalize is being Superceded by Timetk:

The anomalize package functionality has been superceded by timetk. We suggest you begin to use the timetk::anomalize() to benefit from enhanced functionality to get improvements going forward. Learn more about Anomaly Detection with timetk here.

The original anomalize package functionality will be maintained for previous code bases that use the legacy functionality.

To prevent the new timetk functionality from conflicting with old anomalize code, use these lines:

library(anomalize)

anomalize <- anomalize::anomalize
plot_anomalies <- anomalize::plot_anomalies

anomalize

Coveragestatus CRAN_Status_Badge

Tidy anomaly detection

anomalize enables a tidy workflow for detecting anomalies in data. The main functions are time_decompose(), anomalize(), and time_recompose(). When combined, it’s quite simple to decompose time series, detect anomalies, and create bands separating the “normal” data from the anomalous data.

Anomalize In 2 Minutes (YouTube)

Anomalize

Check out our entire Software Intro Series on YouTube!

Installation

You can install the development version with devtools or the most recent CRAN version with install.packages():

# devtools::install_github("business-science/anomalize")
install.packages("anomalize")

How It Works

anomalize has three main functions:

  • time_decompose(): Separates the time series into seasonal, trend, and remainder components
  • anomalize(): Applies anomaly detection methods to the remainder component.
  • time_recompose(): Calculates limits that separate the “normal” data from the anomalies!

Getting Started

Load the tidyverse and anomalize packages.

library(tidyverse)
library(anomalize)

# NOTE: timetk now has anomaly detection built in, which 
#  will get the new functionality going forward.
#  Use this script to prevent overwriting legacy anomalize:

anomalize <- anomalize::anomalize
plot_anomalies <- anomalize::plot_anomalies

Next, let’s get some data. anomalize ships with a data set called tidyverse_cran_downloads that contains the daily CRAN download counts for 15 “tidy” packages from 2017-01-01 to 2018-03-01.

Suppose we want to determine which daily download “counts” are anomalous. It’s as easy as using the three main functions (time_decompose(), anomalize(), and time_recompose()) along with a visualization function, plot_anomalies().

tidyverse_cran_downloads %>%
    # Data Manipulation / Anomaly Detection
    time_decompose(count, method = "stl") %>%
    anomalize(remainder, method = "iqr") %>%
    time_recompose() %>%
    # Anomaly Visualization
    plot_anomalies(time_recomposed = TRUE, ncol = 3, alpha_dots = 0.25) +
    labs(title = "Tidyverse Anomalies", subtitle = "STL + IQR Methods") 

Check out the anomalize Quick Start Guide.

Reducing Forecast Error by 32%

Yes! Anomalize has a new function, clean_anomalies(), that can be used to repair time series prior to forecasting. We have a brand new vignette - Reduce Forecast Error (by 32%) with Cleaned Anomalies.

tidyverse_cran_downloads %>%
    filter(package == "lubridate") %>%
    ungroup() %>%
    time_decompose(count) %>%
    anomalize(remainder) %>%
  
    # New function that cleans & repairs anomalies!
    clean_anomalies() %>%
  
    select(date, anomaly, observed, observed_cleaned) %>%
    filter(anomaly == "Yes")
#> # A time tibble: 19 × 4
#> # Index:         date
#>    date       anomaly  observed observed_cleaned
#>    <date>     <chr>       <dbl>            <dbl>
#>  1 2017-01-12 Yes     -1.14e-13            3522.
#>  2 2017-04-19 Yes      8.55e+ 3            5202.
#>  3 2017-09-01 Yes      3.98e-13            4137.
#>  4 2017-09-07 Yes      9.49e+ 3            4871.
#>  5 2017-10-30 Yes      1.20e+ 4            6413.
#>  6 2017-11-13 Yes      1.03e+ 4            6641.
#>  7 2017-11-14 Yes      1.15e+ 4            7250.
#>  8 2017-12-04 Yes      1.03e+ 4            6519.
#>  9 2017-12-05 Yes      1.06e+ 4            7099.
#> 10 2017-12-27 Yes      3.69e+ 3            7073.
#> 11 2018-01-01 Yes      1.87e+ 3            6418.
#> 12 2018-01-05 Yes     -5.68e-14            6293.
#> 13 2018-01-13 Yes      7.64e+ 3            4141.
#> 14 2018-02-07 Yes      1.19e+ 4            8539.
#> 15 2018-02-08 Yes      1.17e+ 4            8237.
#> 16 2018-02-09 Yes     -5.68e-14            7780.
#> 17 2018-02-10 Yes      0                   5478.
#> 18 2018-02-23 Yes     -5.68e-14            8519.
#> 19 2018-02-24 Yes      0                   6218.

But Wait, There’s More!

There are a several extra capabilities:

  • plot_anomaly_decomposition() for visualizing the inner workings of how algorithm detects anomalies in the “remainder”.
tidyverse_cran_downloads %>%
    filter(package == "lubridate") %>%
    ungroup() %>%
    time_decompose(count) %>%
    anomalize(remainder) %>%
    plot_anomaly_decomposition() +
    labs(title = "Decomposition of Anomalized Lubridate Downloads")

For more information on the anomalize methods and the inner workings, please see “Anomalize Methods” Vignette.

References

Several other packages were instrumental in developing anomaly detection methods used in anomalize:

  • Twitter’s AnomalyDetection, which implements decomposition using median spans and the Generalized Extreme Studentized Deviation (GESD) test for anomalies.
  • forecast::tsoutliers() function, which implements the IQR method.

Interested in Learning Anomaly Detection?

Business Science offers two 1-hour courses on Anomaly Detection:

Metadata

Version

0.3.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows