MyNixOS website logo
Description

Data from the 'Access to Opportunities Project (AOP)'.

Download data from the 'Access to Opportunities Project (AOP)'. The 'aopdata' package brings annual estimates of access to employment, health, education and social assistance services by transport mode, as well as data on the spatial distribution of population, jobs, health care, schools and social assistance facilities at a fine spatial resolution for all cities included in the project. More info on the 'AOP' website <https://www.ipea.gov.br/acessooportunidades/en/>.

aopdata: Data from the Access to Opportunities Project

CRAN/METACRAN Version CRAN/METACRAN Total downloads Codecov test coverage cmd check status

logo

aopdata is an R package to download data from the Access to Opportunities Project (AOP). The AOP is a research initiative led by the Institute for Applied Economic Research (Ipea) with the aim to study transport access to opportunities in Brazilian cities.

The aopdata package brings annual estimates of access to employment, health, education and social protection services by transport mode at a fine spatial resolution for the 20 largest cities in Brazil. The package also brings data on the spatial distribution of population by sex, race, income and age, as well as the distribution of jobs, schools, health care facilities and social assistance reference centers.

Data for 2017, 2018 and 2019 are already available, and cover accessibility estimates by car and active transport modes (walking and cycling) for the 20 largest cities in the country, and by public transport for over 9 major cities. For more information on the AOP website.

Installation

# From CRAN
install.packages("aopdata")
library(aopdata)

# or use the development version with latest features
utils::remove.packages('aopdata')
devtools::install_github("ipeaGIT/aopdata", subdir = "r-package")
library(aopdata)

Overview of the package

The aopdata package includes five core functions.

  • read_population() - Download population data
  • read_landuse() - Download landuse data
  • read_access() - Download accessibility estimates
  • aopdata_dictionary() - Opens aopdata data dictionary on a web browser
  • read_grid() - Download the H3 hexagonal spatial grid

For a detailed explanations of these functions, check the vignettes:

Basic Usage

Data dictionary

The dictionary of data columns is presented in the documentation of each function. However, you can also open the data dictionary on a web browser by running:

# for English
aopdata_dictionary(lang = 'en')

# for Portuguese
aopdata_dictionary(lang = 'pt')

Accessibility estimates

The read_access() function downloads accessibility estimates for a given city, mode and year. For the sake of convenience, this function will also automatically download the population and land use data for the cities selected. Note that accessibility estimates are available for peak and off-peak periods for public_transportand car modes.

# Download accessibility, population and land use data
cur <- read_access(
  city = 'Curitiba',
  mode = 'public_transport', 
  peak = TRUE,
  year = 2019
  )

You many also set the parameter geometry = TRUE so that functions return a spatial sf object with the geometries of the H3 spatial grid.

# Download accessibility, population and land use data
cur <- read_access(
  city = 'Curitiba', 
  mode = 'public_transport', 
  peak = TRUE,
  year = 2019,
  geometry = TRUE
  )

Population and land use data

In case you are only interested in using the population and land use data generated by the Access to Opportunities Project, you can download these data sets separately. Please note that the population available comes from the latest Brazilian 2010 census, while land use data cna be downloaded for 2017, 2018 or 2019.

# Land use data
lu_for <- read_landuse(
  city = 'Fortaleza', 
  year = 2019,
  geometry = TRUE
  )

# Population data
pop_for <- read_population(
  city = 'Fortaleza', 
  year = 2010,
  geometry = TRUE
  )

Read only spatial grid data

In case you would like to download only the H3 spatial grid of cities in the AOP project, you can use the read_grid() function.

h3_for <- read_grid(city = 'Fortaleza')

Note

In all of the functions above, note that:

  • The city parameter can also be a 3-letter abbreviation of the city.
df <- read_access(city = 'cur', mode = 'public_transport', year = 2019)
df <- read_grid(city = 'for')
  • You may also download the data for all cities of the project at once using city = 'all':
all <- read_landuse(city = 'all', year = 2019)

Acknowledgement ipea

The R package aopdata is developed by a team at the Institute for Applied Economic Research (Ipea), Brazil.

Citation

If you use this package in your own work, please cite it as one of the publications below:

Population and land use data

  • Pereira, Rafael H. M. et al. (2022) Distribuição espacial de características sociodemográficas e localização de empregos e serviços públicos das vinte maiores cidades do Brasil. Texto para Discussão 2772. Ipea - Instituto de Pesquisa Econômica Aplicada. http://dx.doi.org/10.38116/td2772

Accessibility data

  • Pereira, Rafael H. M. et al. (2022) Estimativas de acessibilidade a empregos e serviços públicos via transporte ativo, público e privado nas 20 maiores cidades do Brasil em 2017, 2018, 2019. Texto para Discussão 2800. Ipea - Instituto de Pesquisa Econômica Aplicada. http://dx.doi.org/10.38116/td2800
Metadata

Version

1.0.3

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows