MyNixOS website logo
Description

Spline Regression with Adaptive Knot Selection.

Perform one-dimensional spline regression with automatic knot selection. This package uses a penalized approach to select the most relevant knots. B-splines of any degree can be fitted. More details in 'Goepp et al. (2018)', "Spline Regression with Automatic Knot Selection", <arXiv:1808.01770>.

aspline

R-CMD-check

What are Adaptive Splines?

This package implements A-Spline regression, an adaptive procedure for fitting splines with automatic selection of the knots. One-dimentional B-Splines of any non-negative degree can be fitted. This method uses a penalization approach to compensate overfitting. The penalty is proportional to the number of knots used to support the regression spline. Consequently, the fitted splines will have knots only where necessary and the fitted model is sparser than comparable penalized spline regressions (for instance the standard method for penalized splines: P-splines).

Installation

You can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("goepp/aspline")

Example

Below is an illustration of the A-spline procedure using the helmet data. The thick line represents the fitted spline and the thin line represents the B-spline basis decomposition of the fitted curve.

library(aspline)
library(tidyverse)
#> ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
#> ✓ ggplot2 3.3.3     ✓ purrr   0.3.4
#> ✓ tibble  3.1.2     ✓ dplyr   1.0.5
#> ✓ tidyr   1.1.3     ✓ stringr 1.4.0
#> ✓ readr   1.4.0     ✓ forcats 0.5.1
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag()    masks stats::lag()
library(splines2)
data(helmet)
x <- helmet$x
y <- helmet$y
k <- 40
knots <- seq(min(x), max(x), length = k + 2)[-c(1, k + 2)]
degree <- 3
pen <- 10 ^ seq(-4, 4, 0.25)
x_seq <- seq(min(x), max(x), length = 1000)
aridge <- aspline(x, y, knots, pen, degree = degree)
#> Warning: `data_frame()` was deprecated in tibble 1.1.0.
#> Please use `tibble()` instead.
a_fit <- lm(y ~ bSpline(x, knots = aridge$knots_sel[[which.min(aridge$ebic)]],
                        degree = degree))
X_seq <- bSpline(x_seq, knots = aridge$knots_sel[[which.min(aridge$ebic)]], 
                 intercept = TRUE, degree = degree)
a_basis <- (X_seq %*% diag(coef(a_fit))) %>%
  as.data.frame() %>%
  mutate(x = x_seq) %>%
  reshape2::melt(id.vars = "x", variable.name = "spline_n", value.name = "y") %>%
  as_tibble() %>%
  filter(y != 0)
a_predict <- data_frame(x = x_seq, pred = predict(a_fit, data.frame(x = x_seq)))
ggplot() +
  geom_point(data = helmet, aes(x, y), shape = 1) +
  geom_line(data = a_predict, aes(x, pred), size = 0.5) +
  geom_line(data = a_basis, aes(x, y, group = spline_n), linetype = 1, size = 0.1) +
  theme(legend.position = "none") +
  ylab("") +
  xlab("")

For the sake of comparision, we display here the estimated P-spline with the same data. The thin lines also represent the B-spline basis decomposition.

p_fit <- mgcv::gam(y ~ s(x, bs = "ps", k = length(knots) + 3 + 1, m = c(3, 2)))
X <- bSpline(x_seq, knots = knots, intercept = TRUE)
p_basis <- (X %*% diag(coef(p_fit))) %>%
  as.data.frame() %>%
  mutate(x = x_seq) %>%
  reshape2::melt(id.vars = "x", variable.name = "spline_n", value.name = "y") %>%
  as_tibble() %>%
  filter(y != 0)
p_predict <- data_frame(x = x_seq, pred = predict(p_fit, data.frame(x = x_seq)))
ggplot() +
  geom_point(data = helmet, aes(x, y), shape = 1) +
  geom_line(data = p_predict, aes(x, pred), size = 0.5) +
  geom_line(data = p_basis, aes(x, y, group = spline_n), linetype = 1, size = 0.1) +
  theme(legend.position = "none") +
  ylab("") + xlab("")

Contact

If you encounter a bug or have a suggestion for improvement, please raise an issue or make a pull request.

License

This package is released under the GPLv3 License: see the LICENSE file or the online text. In short, you can use, modify, and distribute (including for commerical use) this package, with the notable obligations to use the GPLv3 license for your work and to provide a copy of the present source code.

Metadata

Version

0.2.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows