MyNixOS website logo
Description

Estimate Asymptomatic Cases via Capture/Recapture Methods.

Estimate the lower and upper bound of asymptomatic cases in an epidemic using the capture/recapture methods from Böhning et al. (2020) <doi:10.1016/j.ijid.2020.06.009> and Rocchetti et al. (2020) <doi:10.1101/2020.07.14.20153445>. Note there is currently some discussion about the validity of the methods implemented in this package. You should read carefully the original articles, alongside this answer from Li et al. (2022) <doi:10.48550/arXiv.2209.11334> before using this package in your project.

asymptor

CRANstatus R buildstatus Lifecycle:maturing Codecov testcoverage

The asymptor R package allows you to estimate the lower and upper bound of asymptomatic cases in an epidemic using the capture/recapture methods from Böhning et al. (2020) and Rocchetti et al. (2020).

Please note there is currently some discussion about the validity of the methods implemented in this package. You should read carefully the original articles, alongside this answer from Li et al. (2022) before using this package in your project.

Installation

You can install the stable version of this package from CRAN:

install.packages("asymptor")

or the development version from GitHub, via my r-universe:

install.packages("asymptor", repos = "https://bisaloo.r-universe.dev")

Example

Let’s start by loading some example data from the COVID-19 epidemic in Italy:

d <- readRDS(system.file("extdata", "covid19_italy.rds", package = "asymptor"))
head(d)
#>         date new_cases new_deaths
#> 1 2020-01-02         0          0
#> 2 2020-01-03         0          0
#> 3 2020-01-04         0          0
#> 4 2020-01-05         0          0
#> 5 2020-01-06         0          0
#> 6 2020-01-07         0          0

We can estimate the lower and upper bound of asymptomatic cases with:

library(asymptor)
estimate_asympto(d$date, d$new_cases, d$new_deaths)

Or, with a tidyverse-compatible syntax:

library(dplyr)
d %>%
  mutate(asympto_cases = estimate_asympto(date, new_cases, new_deaths))

Please refer to the vignette for a detailed example using the COVID-19 data from Italy.

example_figure

Metadata

Version

1.1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows