MyNixOS website logo
Description

Automatic Cognostic Summaries.

Automatically calculates cognostic groups for plot objects and list column plot objects. Results are returned in a nested data frame.

autocogs

Travis-CI BuildStatus CoverageStatus CRAN_Status_Badge

Cognostics are univariate statistics (or metrics) for a subset of data. When paired with the underlying data of visualizations, cognostics are a powerful tool for ordering and filtering the visualizations. add_panel_cogs() will automatically append cognostics for each plot player in a given panel column. The newly appended data can be fed into a trelliscopejs widget for easy viewing.

Installation

You can install autocogs from github with:

remotes::install_github("schloerke/autocogs")

Examples

Gapminder

library(autocogs)
library(tidyverse)
#> ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
#> ✔ ggplot2 3.3.3.9000     ✔ purrr   0.3.4     
#> ✔ tibble  3.1.1          ✔ dplyr   1.0.5     
#> ✔ tidyr   1.1.3          ✔ stringr 1.4.0     
#> ✔ readr   1.4.0          ✔ forcats 0.5.1
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag()    masks stats::lag()
library(gapminder)
# remotes::install_github("hafen/trelliscopejs")
# remotes::install_github("schloerke/trelliscopejs@autocogs")
library(trelliscopejs)

# Explore
p <-
  ggplot(gapminder, aes(year, lifeExp)) +
  geom_line(aes(group = country)) +
  geom_smooth(method = "lm", formula = y ~ x)
p

Looking at the plot above, most countries follow a linear trend: As the year increases, life expectancy goes up. A few countries do not follow a linear trend.

In the examples below, we will extract cognostics to aid in exploring the countries whose life expectancy is not linear.

trelliscopejs::facet_trelliscope()

ggplot(gapminder, aes(year, lifeExp)) +
  geom_smooth(method = "lm", formula = y ~ x) +
  geom_line() +
  trelliscopejs::facet_trelliscope(
    ~ country + continent,
    nrow = 3, ncol = 6,
    self_contained = TRUE,
    auto_cog = TRUE,
    state = list(
      # set the state to display the country, continent, and R^2 value
      #   sorted by ascending R^2 value
      sort = list(trelliscopejs::sort_spec("_lm_r2")),
      labels = c("country", "continent", "_lm_r2")
    ),
    path = "readme-figs/facet"
  )
#> using data from the first layer

# (screen shot of trelliscopejs widget)

trelliscopejs::trelliscope()

This is a full, start to finish example how automatic cognostics could be inserted into a data exploration workflow.

# Find a consistent y range
y_range <- range(gapminder$lifeExp)

## # Set up data and panel column
gapminder %>%
  group_by(country, continent) %>%
  # nest the data according to the country and continent
  nest() %>%
  mutate(
    # create a column of plots with a
    # * line
    # * linear model
    panel = lapply(data, function(dt) {
      ggplot(dt, aes(year, lifeExp)) +
        geom_smooth(method = "lm", formula = y ~ x) +
        geom_line() +
        ylim(y_range[1], y_range[2])
    })
  ) %>%
  print() ->
gap_data
#> # A tibble: 142 x 4
#> # Groups:   country, continent [142]
#>    country     continent data                  panel 
#>    <fct>       <fct>     <list>                <list>
#>  1 Afghanistan Asia      <tibble[,4] [12 × 4]> <gg>  
#>  2 Albania     Europe    <tibble[,4] [12 × 4]> <gg>  
#>  3 Algeria     Africa    <tibble[,4] [12 × 4]> <gg>  
#>  4 Angola      Africa    <tibble[,4] [12 × 4]> <gg>  
#>  5 Argentina   Americas  <tibble[,4] [12 × 4]> <gg>  
#>  6 Australia   Oceania   <tibble[,4] [12 × 4]> <gg>  
#>  7 Austria     Europe    <tibble[,4] [12 × 4]> <gg>  
#>  8 Bahrain     Asia      <tibble[,4] [12 × 4]> <gg>  
#>  9 Bangladesh  Asia      <tibble[,4] [12 × 4]> <gg>  
#> 10 Belgium     Europe    <tibble[,4] [12 × 4]> <gg>  
#> # … with 132 more rows

# Double check the plot worked...
# Look at the first panel (ggplot2 plot) of Afghanistan
gap_data$panel[[1]]


#!!!!!!!!!!
# Add cognostic information given the panel column plots
#!!!!!!!!!!
gap_data %>%
  autocogs::add_panel_cogs() %>%
  ungroup() %>%
  # double check it was added
  print(width = 100) ->
full_gap_data
#> # A tibble: 142 x 10
#>    country     continent data                  panel  `_smooth`           
#>    <fct>       <fct>     <list>                <list> <list>              
#>  1 Afghanistan Asia      <tibble[,4] [12 × 4]> <gg>   <tibble[,3] [1 × 3]>
#>  2 Albania     Europe    <tibble[,4] [12 × 4]> <gg>   <tibble[,3] [1 × 3]>
#>  3 Algeria     Africa    <tibble[,4] [12 × 4]> <gg>   <tibble[,3] [1 × 3]>
#>  4 Angola      Africa    <tibble[,4] [12 × 4]> <gg>   <tibble[,3] [1 × 3]>
#>  5 Argentina   Americas  <tibble[,4] [12 × 4]> <gg>   <tibble[,3] [1 × 3]>
#>  6 Australia   Oceania   <tibble[,4] [12 × 4]> <gg>   <tibble[,3] [1 × 3]>
#>  7 Austria     Europe    <tibble[,4] [12 × 4]> <gg>   <tibble[,3] [1 × 3]>
#>  8 Bahrain     Asia      <tibble[,4] [12 × 4]> <gg>   <tibble[,3] [1 × 3]>
#>  9 Bangladesh  Asia      <tibble[,4] [12 × 4]> <gg>   <tibble[,3] [1 × 3]>
#> 10 Belgium     Europe    <tibble[,4] [12 × 4]> <gg>   <tibble[,3] [1 × 3]>
#>    `_lm`            `_x`           `_y`           `_bivar`        `_n`          
#>    <list>           <list>         <list>         <list>          <list>        
#>  1 <tibble[,19] [1… <tibble[,5] [… <tibble[,5] [… <tibble[,2] [1… <tibble[,5] […
#>  2 <tibble[,19] [1… <tibble[,5] [… <tibble[,5] [… <tibble[,2] [1… <tibble[,5] […
#>  3 <tibble[,19] [1… <tibble[,5] [… <tibble[,5] [… <tibble[,2] [1… <tibble[,5] […
#>  4 <tibble[,19] [1… <tibble[,5] [… <tibble[,5] [… <tibble[,2] [1… <tibble[,5] […
#>  5 <tibble[,19] [1… <tibble[,5] [… <tibble[,5] [… <tibble[,2] [1… <tibble[,5] […
#>  6 <tibble[,19] [1… <tibble[,5] [… <tibble[,5] [… <tibble[,2] [1… <tibble[,5] […
#>  7 <tibble[,19] [1… <tibble[,5] [… <tibble[,5] [… <tibble[,2] [1… <tibble[,5] […
#>  8 <tibble[,19] [1… <tibble[,5] [… <tibble[,5] [… <tibble[,2] [1… <tibble[,5] […
#>  9 <tibble[,19] [1… <tibble[,5] [… <tibble[,5] [… <tibble[,2] [1… <tibble[,5] […
#> 10 <tibble[,19] [1… <tibble[,5] [… <tibble[,5] [… <tibble[,2] [1… <tibble[,5] […
#> # … with 132 more rows

# Display the panel and cognostics in a trelliscopejs widget
trelliscopejs::trelliscope(
  full_gap_data, "gapminder life expectancy",
  panel_col = "panel",
  ncol = 6, nrow = 3,
  auto_cog = FALSE,
  self_contained = TRUE,
  state = list(
    # sort by ascending R^2 value (percent explained by linear model)
    sort = list(trelliscopejs::sort_spec("_lm_r2")),
    # display the country, continent, and R^2 value
    labels = c("country", "continent", "_lm_r2")
  ),
  path = "readme-figs/manually"
)
#> New names:
#> * min -> min...26
#> * max -> max...27
#> * mean -> mean...28
#> * median -> median...29
#> * var -> var...30
#> * ...
#> Warning: Removed 4 rows containing missing values (geom_smooth).
#> Warning: Removed 8 rows containing missing values (geom_smooth).

# (screen shot of trelliscopejs widget)

Custom Cognostics

  • add_cog_group() to add a custom cognostics group.
  • add_layer_cogs() to call which cognostics groups should be executed for a given plot layer.

Using existing code from the autocogs package, we will add the univariate continuous cognostics group.

add_cog_group(
  "univariate_continuous",
  field_info("x", "continuous"),
  "univariate metrics for continuous data",
  function(x, ...) {
    x_range <- range(x, na.rm = TRUE)
    list(
      min = cog_desc(x_range[1], "minimum of non NA data"),
      max = cog_desc(x_range[2], "maximum of non NA data"),
      mean = cog_desc(mean(x, na.rm = TRUE), "mean of non NA data"),
      median = cog_desc(median(x, na.rm = TRUE), "median of non NA data"),
      var = cog_desc(var(x, na.rm = TRUE), "variance of non NA data")
    )
  }
)

We can then call the 'univariate_continuous' cognostics group whenever a geom_rug layer is added in a ggplot2 plot object using the code below.

add_layer_cogs(
  # load_all(); p <- qplot(x = 1, y = Sepal.Length, data = iris, geom = "boxplot"); plot_cogs(p)
  "geom_boxplot",
  "boxplot plot",
  cog_group_df(
    "univariate_continuous", "y", "_y",
    "boxplot", "y", "_boxplot",
    "univariate_counts", "y", "_n"
  )
)
Metadata

Version

0.1.4

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows