MyNixOS website logo
Description

Automate the Creation of Generalized Additive Models (GAMs).

This wrapper package for 'mgcv' makes it easier to create high-performing Generalized Additive Models (GAMs). With its central function autogam(), by entering just a dataset and the name of the outcome column as inputs, 'AutoGAM' tries to automate the procedure of configuring a highly accurate GAM which performs at reasonably high speed, even for large datasets.

autogam

Lifecycle:experimental CRANstatus R-CMD-check

AutoGAM is a wrapper package for mgcv that makes it easier to create high-performing Generalized Additive Models (GAMs). With its central function autogam(), by entering just a dataset and the name of the outcome column as inputs, AutoGAM tries to automate as much as possible the procedure of configuring a highly accurate GAM at reasonably high speed, even for large datasets.

Installation

You can install the development version of autogam like so:

# install.packages("devtools")
devtools::install_github("tripartio/autogam")

Example

Here’s a simple example using the mtcars dataset to predict mpg:

library(autogam)

autogam(mtcars, 'mpg')
#> Detecting distribution of `mpg`...
#> Loading required package: intervals
#> 
#> Fitting GAM with `Inverse Gaussian` distribution...
#> ✔ GAM successfully fit with 86.1% standardized accuracy.
#> 
#> Family: gaussian 
#> Link function: inverse 
#> 
#> Formula:
#> mpg ~ cyl + s(disp, bs = "cr") + s(hp, bs = "cr") + s(drat, bs = "cr") + 
#>     s(wt, bs = "cr") + s(qsec, bs = "cr") + vs + am + gear + 
#>     s(carb, k = 3, bs = "cr")
#> 
#> Estimated degrees of freedom:
#> 1.00 1.00 1.00 1.00 1.37 1.00  total = 11.37 
#> 
#> fREML score: 114.8354     
#> 
#> MAE: 1.307; Std. accuracy: 86.1%
Metadata

Version

0.1.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows