MyNixOS website logo
Description

Automate the Creation of Generalized Additive Models (GAMs).

This wrapper package for 'mgcv' makes it easier to create high-performing Generalized Additive Models (GAMs). With its central function autogam(), by entering just a dataset and the name of the outcome column as inputs, 'AutoGAM' tries to automate the procedure of configuring a highly accurate GAM which performs at reasonably high speed, even for large datasets.

autogam

Lifecycle:experimental CRANstatus R-CMD-check

AutoGAM is a wrapper package for mgcv that makes it easier to create high-performing Generalized Additive Models (GAMs). With its central function autogam(), by entering just a dataset and the name of the outcome column as inputs, AutoGAM tries to automate as much as possible the procedure of configuring a highly accurate GAM at reasonably high speed, even for large datasets.

Installation

You can install the development version of autogam like so:

# install.packages("devtools")
devtools::install_github("tripartio/autogam")

Example

Here’s a simple example using the mtcars dataset to predict mpg:

library(autogam)

ag <- autogam(mtcars, 'mpg')

summary(ag)
#> 
#> Family: gaussian 
#> Link function: identity 
#> 
#> Formula:
#> mpg ~ cyl + s(disp) + s(hp) + s(drat) + s(wt) + s(qsec) + vs + 
#>     am + gear + s(carb, k = 3)
#> 
#> Parametric coefficients:
#>             Estimate Std. Error t value Pr(>|t|)  
#> (Intercept)   7.3453     5.3267   1.379   0.2671  
#> cyl           0.5814     0.5264   1.104   0.3547  
#> vs           10.3131     1.7012   6.062   0.0107 *
#> am            4.9605     0.8490   5.842   0.0118 *
#> gear          0.7107     0.7857   0.905   0.4362  
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Approximate significance of smooth terms:
#>           edf Ref.df      F p-value   
#> s(disp) 1.000  1.000  4.984  0.1117   
#> s(hp)   8.739  8.868 17.975  0.0170 * 
#> s(drat) 1.987  2.220 16.275  0.0395 * 
#> s(wt)   1.764  2.083  2.669  0.1891   
#> s(qsec) 8.904  8.970 28.950  0.0089 **
#> s(carb) 1.785  1.876  1.382  0.4412   
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> R-sq.(adj) =  0.996   Deviance explained =  100%
#> GCV = 1.7279  Scale est. = 0.1523    n = 32
Metadata

Version

0.0.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows