MyNixOS website logo
Description

Bayesian Hierarchical Modeling for Label-Free Proteomics.

Statistical decision in proteomics data using a hierarchical Bayesian model. There are two regression models for describing the mean-variance trend, a gamma regression or a latent gamma mixture regression. The regression model is then used as an Empirical Bayes estimator for the prior on the variance in a peptide. Further, it assumes that each measurement has an uncertainty (increased variance) associated with it that is also inferred. Finally, it tries to estimate the posterior distribution (by Hamiltonian Monte Carlo) for the differences in means for each peptide in the data. Once the posterior is inferred, it integrates the tails to estimate the probability of error from which a statistical decision can be made. See Berg and Popescu for details (<doi:10.1101/2023.05.11.540411>).

cran-badge R-CMD-check

Baldur

The goal of Baldur is to shine light on your proteomics data. Baldur is a hierarchical Bayesian model that uses an empirical Bayes method to estimate hyperparamters for the variance and measurement specific uncertainty. It then estimates the posterior of the difference in means between different conditions for each peptide/protein/PTM. Finally, it integrates the posterior to estimate the probability of error.

Installation

You can install the development version of baldur from this github or the stable version from CRAN. Importantly, you first need to follow the instructions for installing rstanhttps://github.com/stan-dev/rstan/wiki/RStan-Getting-Started and make sure that is working. Then you can install baldur accordingly:

For the stable release please install from CRAN:

install.packages('baldur')

Or you can install the developmental version of baldur from this github:

devtools::install_github('PhilipBerg/baldur', build_vignettes = T)

Note that Ubuntu operating systems can require pandochttps://pandoc.org/ to compile the vignettes.

For Windows, the developmental version of rstan is sometimes needed to install baldur.

Example

Please see the vignettes for examples vignette('baldur_yeast_tutorial') and vignette('baldur_ups_tutorial').

Reference

Berg, Philip, and George Popescu. “Baldur: Bayesian hierarchical modeling for label-free proteomics exploiting gamma dependent mean-variance trends.” bioRxiv (2023): 2023-05. https://doi.org/10.1101/2023.05.11.540411

Metadata

Version

0.0.3

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows