MyNixOS website logo
Description

Almost Linear-Time k-Medoids Clustering.

Interface to a high-performance implementation of k-medoids clustering described in Tiwari, Zhang, Mayclin, Thrun, Piech and Shomorony (2020) "BanditPAM: Almost Linear Time k-medoids Clustering via Multi-Armed Bandits" <https://proceedings.neurips.cc/paper/2020/file/73b817090081cef1bca77232f4532c5d-Paper.pdf>.

banditpam

We provide an R interface to the high-performance implementation of banditpam, a $k$-medoids clustering algorithm.

If you use this software, please cite:

Mo Tiwari, Martin Jinye Zhang, James Mayclin, Sebastian Thrun, Chris Piech, Ilan Shomorony. "banditpam: Almost Linear Time k-medoids Clustering via Multi-Armed Bandits" Advances in Neural Information Processing Systems (NeurIPS) 2020.

Here's a BibTeX entry:

@inproceedings{banditpam,
  title={banditpam: Almost Linear Time k-medoids Clustering via Multi-Armed Bandits},
  author={Tiwari, Mo and Zhang, Martin J and Mayclin, James and Thrun, Sebastian and Piech, Chris and Shomorony, Ilan},
  booktitle={Advances in Neural Information Processing Systems},
  pages={368--374},
  year={2020}
}

Installation

banditpam can be installed from CRAN like any other package.

Example

This is a basic example which shows you how to solve a common problem:

library(banditpam)
## Generate data from a Gaussian Mixture Model with the given means:
set.seed(10)
n_per_cluster <- 40
means <- list(c(0, 0), c(-5, 5), c(5, 5))
X <- do.call(rbind, lapply(means, MASS::mvrnorm, n = n_per_cluster, Sigma = diag(2)))
## Create KMediods object
obj <- KMedoids$new(k = 3)
## Fit data
obj$fit(data = X, loss = "l2")
## Retrieve medoid indices
meds <- obj$get_medoids_final()
## Plot the results
plot(X[, 1], X[, 2])
points(X[meds, 1], X[meds, 2], col = "red", pch = 19)
##
## One can query some statistics too; see help("KMedoids")
##
obj$get_statistic("dist_computations")
obj$get_statistic("dist_computations_and_misc")
obj$get_statistic("cache_misses")

Metadata

Version

1.0-1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows