MyNixOS website logo
Description

Fit Multivariate Response Generalized Additive Models using Hamiltonian Monte Carlo.

The 'bayesGAM' package is designed to provide a user friendly option to fit univariate and multivariate response Generalized Additive Models (GAM) using Hamiltonian Monte Carlo (HMC) with few technical burdens. The functions in this package use 'rstan' (Stan Development Team 2020) to call 'Stan' routines that run the HMC simulations. The 'Stan' code for these models is already pre-compiled for the user. The programming formulation for models in 'bayesGAM' is designed to be familiar to analysts who fit statistical models in 'R'. Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., ... & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of statistical software, 76(1). Stan Development Team. 2018. RStan: the R interface to Stan. R package version 2.17.3. <https://mc-stan.org/> Neal, Radford (2011) "Handbook of Markov Chain Monte Carlo" ISBN: 978-1420079418. Betancourt, Michael, and Mark Girolami. "Hamiltonian Monte Carlo for hierarchical models." Current trends in Bayesian methodology with applications 79.30 (2015): 2-4. Thomas, S., Tu, W. (2020) "Learning Hamiltonian Monte Carlo in R" <arXiv:2006.16194>, Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013) "Bayesian Data Analysis" ISBN: 978-1439840955, Agresti, Alan (2015) "Foundations of Linear and Generalized Linear Models ISBN: 978-1118730034, Pinheiro, J., Bates, D. (2006) "Mixed-effects Models in S and S-Plus" ISBN: 978-1441903174. Ruppert, D., Wand, M. P., & Carroll, R. J. (2003). Semiparametric regression (No. 12). Cambridge university press. ISBN: 978-0521785167.

bayesGAM

Bayesian generalized additive models using Stan

The bayesGAM package is designed to provide a user friendly option to fit univariate and multivariate response Generalized Additive Models (GAM) using Hamiltonian Monte Carlo (HMC) with few technical burdens. The R functions in this package use rstan (Stan Development Team 2020) to call Stan routines that run the HMC simulations. The Stan code for these models is already translated to C++ and pre-compiled for the user. The programming formulation for models in bayesGAM is designed to be familiar to statisticians and analysts who fit statistical models in R.

Metadata

Version

0.0.2

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows