MyNixOS website logo
Description

Perform Batch Balanced KNN in R.

A fast and intuitive batch effect removal tool for single-cell data. BBKNN is originally used in the 'scanpy' python package, and now can be used with 'Seurat' seamlessly.

bbknnR

Use batch balanced KNN (BBKNN) in R

Introduction

BBKNN is a fast and intuitive batch effect removal tool for single-cell data. It is originally used in the scanpy workflow, and now can be used with Seurat seamlessly.

System requirements

bbknnR has been tested on R versions >= 4.1. Please consult the DESCRIPTION file for more details on required R packages. bbknnR has been tested on Linux platforms

To use the full features of bbknnR, you also need to install the bbknn python package:

pip install bbknn

Installation

bbknnR has been released to CRAN:

install.packages("bbknnR")

or can be installed from github:

devtools::install_github("ycli1995/bbknnR")

Quick start

library(bbknnR)
library(Seurat)
data("panc8_small")
panc8_small <- RunBBKNN(panc8_small, batch_key = "tech")

Release

1.1.1

  • Compatibility with tidytable 0.11.0

1.1.0

  • Compatibility with Seurat v5
  • Improvements for documentation and verbose.

1.0.2

  • Explicit import of get_dummies.() from tidytable
  • Fix a bug when pass only one batch_key to RidgeRegression()

1.0.1

  • Import public function similarity_graph() from uwot==0.1.14 in compute_connectivities_umap() to follow the CRAN policy

1.0.0

  • Initially released to CRAN

Citation

Please cite this implementation R in if you use it:

Yuchen Li (2022). bbknnR: Use batch balanced KNN (BBKNN) in R.
package version 0.1.0 https://github.com/ycli1995/bbknnR

Please also cite the original publication of this algorithm.

Polanski, Krzysztof, et al. "BBKNN: fast batch alignment of single cell transcriptomes." Bioinformatics 36.3 (2020): 964-965.
Metadata

Version

1.1.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows