MyNixOS website logo
Description

Behavioral Change Point Analysis of Animal Movement.

The Behavioral Change Point Analysis (BCPA) is a method of identifying hidden shifts in the underlying parameters of a time series, developed specifically to be applied to animal movement data which is irregularly sampled. The method is based on: E. Gurarie, R. Andrews and K. Laidre A novel method for identifying behavioural changes in animal movement data (2009) Ecology Letters 12:5 395-408. A development version is on <https://github.com/EliGurarie/bcpa>. NOTE: the BCPA method may be useful for any univariate, irregularly sampled Gaussian time-series, but animal movement analysts are encouraged to apply correlated velocity change point analysis as implemented in the smoove package, as of this writing on GitHub at <https://github.com/EliGurarie/smoove>. An example of a univariate analysis is provided in the UnivariateBCPA vignette.

Overview

This is a collection of functions that allows one to perform the behavioral change point analysis (BCPA) as described by Gurarie et al. (2009). The key features are estimation of discrete changes in time-series data, notably linear and turning components of gappy velocity times series extracted from movement data.

The package has been on CRAN for a while. The version here is a minor update to address some technical R-check issues. Its development on the Git page will be minimal, mainly because a superior tool for estimating behavioral changes from mechanistic continuous time movement models is available in the smoove package: https://github.com/EliGurarie/smoove. Animal movement analysts are encouraged to switch to using those tools instead (see Gurarie et al. 2017).

That said, bcpa can be very useful for the identification of structural changes of one-dimensional, Gaussian, irregularly sampled time-series, which can come up in many applications, not necessarily related to movement.

For example, here is a link detailing how to apply this tool directly to a univariate time series: http://htmlpreview.github.io/?https://github.com/EliGurarie/bcpa/blob/master/examples/UnivariateBCPA.html.

References

Gurarie, E., R. Andrews and K. Laidre. 2009. A novel method for identifying behavioural changes in animal movement data. Ecology Letters 12: 395-408.

Gurarie, E., C. Fleming, W.F. Fagan, K. Laidre, J. Hernández-Pliego, O. Ovaskainen. 2017. Correlated velocity models as a fundamental unit of animal movement: synthesis and applications. Movement Ecology 5:13.

Metadata

Version

1.3.2

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows