MyNixOS website logo
Description

Count Regression Models Based on the Bell Distribution.

Bell regression models for count data with overdispersion. The implemented models account for ordinary and zero-inflated regression models under both frequentist and Bayesian approaches. Theoretical details regarding the models implemented in the package can be found in Castellares et al. (2018) <doi:10.1016/j.apm.2017.12.014> and Lemonte et al. (2020) <doi:10.1080/02664763.2019.1636940>.

bellreg

R buildstatus CRAN_Status_Badge Downloads TotalDownloads

The goal of bellreg is to provide a set of functions to fit regression models for count data with overdispersion using the Bell distribution. The implemented models account for ordinary and zero-inflated regression models under both frequentist and Bayesian approaches. Theoretical details regarding the models implemented in the package can be found in Castellares et al. (2018) doi:10.1016/j.apm.2017.12.014 and Lemonte et al. (2020) doi:10.1080/02664763.2019.1636940.

Installation

You can install the development version of bellreg from GitHub with:

# install.packages("devtools")
devtools::install_github("fndemarqui/bellreg")

Example

library(bellreg)

data(faults)

# ML approach:
mle <- bellreg(nf ~ lroll, data = faults, approach = "mle", init = 0)
summary(mle)
#> Call:
#> bellreg(formula = nf ~ lroll, data = faults, approach = "mle", 
#>     init = 0)
#> 
#> Coefficients:
#>               Estimate     StdErr z.value   p.value    
#> (Intercept) 0.98524220 0.33219474  2.9659  0.003018 ** 
#> lroll       0.00190934 0.00049004  3.8963 9.766e-05 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> logLik = -88.96139   AIC = 181.9228

# Bayesian approach:
bayes <- bellreg(nf ~ lroll, data = faults, approach = "bayes", refresh = FALSE)
summary(bayes)
#> 
#> bellreg(formula = nf ~ lroll, data = faults, approach = "bayes", 
#>     refresh = FALSE)
#> 
#>              mean se_mean    sd  2.5%   25%   50%   75% 97.5%    n_eff Rhat
#> (Intercept) 0.974   0.007 0.341 0.305 0.751 0.967 1.205 1.642 2459.956    1
#> lroll       0.002   0.000 0.000 0.001 0.002 0.002 0.002 0.003 2728.380    1
#> 
#> Inference for Stan model: bellreg.
#> 4 chains, each with iter=2000; warmup=1000; thin=1; 
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
Metadata

Version

0.0.2.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows