MyNixOS website logo
Description

Analysis of Massive SNP Arrays.

Easy-to-use, efficient, flexible and scalable tools for analyzing massive SNP arrays. Privé et al. (2018) <doi:10.1093/bioinformatics/bty185>.

R build status Codecov test coverage CRAN_Status_Badge DOI

bigsnpr

{bigsnpr} is an R package for the analysis of massive SNP arrays, primarily designed for human genetics. It enhances the features of package {bigstatsr} for the purpose of analyzing genotype data.

To get you started:

Installation

In R, run

# install.packages("remotes")
remotes::install_github("privefl/bigsnpr")

or for the CRAN version

install.packages("bigsnpr")

Input formats

This package reads bed/bim/fam files (PLINK preferred format) using functions snp_readBed() and snp_readBed2(). Before reading into this package's special format, quality control and conversion can be done using PLINK, which can be called directly from R using snp_plinkQC() and snp_plinkKINGQC().

This package can also read UK Biobank BGEN files using function snp_readBGEN(). This function takes around 40 minutes to read 1M variants for 400K individuals using 15 cores.

This package uses a class called bigSNP for representing SNP data. A bigSNP object is a list with some elements:

  • $genotypes: A FBM.code256. Rows are samples and columns are variants. This stores genotype calls or dosages (rounded to 2 decimal places).
  • $fam: A data.frame with some information on the individuals.
  • $map: A data.frame with some information on the variants.

Note that most of the algorithms of this package don't handle missing values. You can use snp_fastImpute() (taking a few hours for a chip of 15K x 300K) and snp_fastImputeSimple() (taking a few minutes only) to impute missing values of genotyped variants.

Package {bigsnpr} also provides functions that directly work on bed files with a few missing values (the bed_*() functions). See paper "Efficient toolkit implementing..".

Polygenic scores

Polygenic scores are one of the main focus of this package. There are 3 main methods currently available:

  • Penalized regressions with individual-level data (see paper and tutorial)

  • Clumping and Thresholding (C+T) and Stacked C+T (SCT) with summary statistics and individual level data (see paper and tutorial).

  • LDpred2 with summary statistics (see paper and tutorial)

Possible upcoming features

  • Multiple imputation for GWAS (https://doi.org/10.1371/journal.pgen.1006091).

  • More interactive (visual) QC.

You can request some feature by opening an issue.

Bug report / Support

How to make a great R reproducible example?

Please open an issue if you find a bug.

If you want help using {bigstatsr} (the big_*() functions), please open an issue on {bigstatsr}'s repo, or post on Stack Overflow with the tag bigstatsr.

I will always redirect you to GitHub issues if you email me, so that others can benefit from our discussion.

References

Metadata

Version

1.12.2

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows