MyNixOS website logo
Description

Comparison of Bioregionalisation Methods.

The main purpose of this package is to propose a transparent methodological framework to compare bioregionalisation methods based on hierarchical and non-hierarchical clustering algorithms (Kreft & Jetz (2010) <doi:10.1111/j.1365-2699.2010.02375.x>) and network algorithms (Lenormand et al. (2019) <doi:10.1002/ece3.4718> and Leroy et al. (2019) <doi:10.1111/jbi.13674>).

bioregion

R-CMD-check Codecov testcoverage CRAN_Status_Badge rstudio mirrordownloads DOI

This R package gathers a comprehensive set of algorithms to perform bioregionalisation analyses.

Bioregionalisation methods can be based on hierarchical clustering algorithms, non-hierarchical clustering algorithms or network algorithms.

:arrow_double_down: Installation

The package can be installed with the following command line in R session:

From the CRAN

install.packages("bioregion")

or from GitHub

# install.packages("devtools")
devtools::install_github("bioRgeo/bioregion")

:scroll: Vignettes

We wrote several vignettes that will help you using the bioregion R package. Vignettes available are the following ones:

Alternatively, if you prefer to view the vignettes in R, you can install the package with build_vignettes = TRUE. But be aware that some vignettes can be slow to generate.

remotes::install_github("bioRgeo/bioregion",
                        dependencies = TRUE, upgrade = "ask", 
                        build_vignettes = TRUE)

vignette("bioregion")

:desktop_computer: Functions

An overview of all functions and data is given here.

:bug: Find a bug?

Thank you for finding it. Head over to the GitHub Issues tab and let us know about it. Alternatively, you can also send us an e-mail. We will try to get to it as soon as we can!

References and dependencies

bioregion depends on ape, bipartite, cluster, data.table, dbscan, dynamicTreeCut, earth, fastcluster, ggplot2, grDevices, igraph, mathjaxr, Matrix, Rcpp, Rdpack, rlang, rmarkdown, segmented,sf, stats, tidyr and utils.

Metadata

Version

1.1.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows