MyNixOS website logo
Description

Tools for Developing Binary Logistic Regression Models.

Tools designed to make it easier for beginner and intermediate users to build and validate binary logistic regression models. Includes bivariate analysis, comprehensive regression output, model fit statistics, variable selection procedures, model validation techniques and a 'shiny' app for interactive model building.

blorr

Tools for building binary logistic regression models

cranchecks Travis-CI BuildStatus Coveragestatus status

Overview

Tools designed to make it easier for users, particularly beginner/intermediate R users to build logistic regression models. Includes comprehensive regression output, variable selection procedures, model validation techniques and a ‘shiny’ app for interactive model building.

Installation

# Install blorr from CRAN
install.packages("blorr")

# Or the development version from GitHub
# install.packages("devtools")
devtools::install_github("rsquaredacademy/blorr")

Articles

Usage

blorr uses consistent prefix blr_* for easy tab completion.

library(blorr)
library(magrittr)

Bivariate Analysis

blr_bivariate_analysis(hsb2, honcomp, female, prog, race, schtyp)
#>                          Bivariate Analysis                           
#> ---------------------------------------------------------------------
#> Variable    Information Value    LR Chi Square    LR DF    LR p-value 
#> ---------------------------------------------------------------------
#>  female           0.10              3.9350          1        0.0473   
#>   prog            0.43              16.1450         2        3e-04    
#>   race            0.33              11.3694         3        0.0099   
#>  schtyp           0.00              0.0445          1        0.8330   
#> ---------------------------------------------------------------------

Weight of Evidence & Information Value

blr_woe_iv(hsb2, prog, honcomp)
#>                            Weight of Evidence                             
#> -------------------------------------------------------------------------
#> levels    count_0s    count_1s    dist_0s    dist_1s        woe      iv   
#> -------------------------------------------------------------------------
#>   1          38          7           0.26       0.13       0.67     0.08  
#>   2          65          40          0.44       0.75      -0.53     0.17  
#>   3          44          6           0.30       0.11       0.97     0.18  
#> -------------------------------------------------------------------------
#> 
#>       Information Value       
#> -----------------------------
#> Variable    Information Value 
#> -----------------------------
#>   prog           0.4329       
#> -----------------------------

Model

# create model using glm
model <- glm(honcomp ~ female + read + science, data = hsb2,
             family = binomial(link = 'logit'))

Regression Output

blr_regress(model)
#>                              Model Overview                              
#> ------------------------------------------------------------------------
#> Data Set    Resp Var    Obs.    Df. Model    Df. Residual    Convergence 
#> ------------------------------------------------------------------------
#>   data      honcomp     200        199           196            TRUE     
#> ------------------------------------------------------------------------
#> 
#>                     Response Summary                     
#> --------------------------------------------------------
#> Outcome        Frequency        Outcome        Frequency 
#> --------------------------------------------------------
#>    0              147              1              53     
#> --------------------------------------------------------
#> 
#>                   Maximum Likelihood Estimates                    
#> -----------------------------------------------------------------
#>  Parameter     DF    Estimate    Std. Error    z value    Pr(>|z|) 
#> -----------------------------------------------------------------
#> (Intercept)    1     -12.7772       1.9755    -6.4677      0.0000 
#>   female1      1      1.4825        0.4474     3.3139       9e-04 
#>    read        1      0.1035        0.0258     4.0186       1e-04 
#>   science      1      0.0948        0.0305     3.1129      0.0019 
#> -----------------------------------------------------------------
#> 
#>  Association of Predicted Probabilities and Observed Responses  
#> ---------------------------------------------------------------
#> % Concordant          0.8561          Somers' D        0.7147   
#> % Discordant          0.1425          Gamma            0.7136   
#> % Tied                0.0014          Tau-a            0.2794   
#> Pairs                  7791           c                0.8568   
#> ---------------------------------------------------------------

Model Fit Statistics

blr_model_fit_stats(model)
#>                               Model Fit Statistics                                
#> ---------------------------------------------------------------------------------
#> Log-Lik Intercept Only:      -115.644    Log-Lik Full Model:              -80.118 
#> Deviance(196):                160.236    LR(3):                            71.052 
#>                                          Prob > LR:                         0.000 
#> MCFadden's R2                   0.307    McFadden's Adj R2:                 0.273 
#> ML (Cox-Snell) R2:              0.299    Cragg-Uhler(Nagelkerke) R2:        0.436 
#> McKelvey & Zavoina's R2:        0.518    Efron's R2:                        0.330 
#> Count R2:                       0.810    Adj Count R2:                      0.283 
#> BIC:                          181.430    AIC:                             168.236 
#> ---------------------------------------------------------------------------------

Confusion Matrix

blr_confusion_matrix(model)
#> Confusion Matrix and Statistics 
#> 
#>           Reference
#> Prediction   0   1
#>          0 135  26
#>          1  12  27
#> 
#> 
#>                 Accuracy : 0.8100 
#>      No Information Rate : 0.7350 
#> 
#>                    Kappa : 0.4673 
#> 
#> McNemars's Test P-Value  : 0.0350 
#> 
#>              Sensitivity : 0.5094 
#>              Specificity : 0.9184 
#>           Pos Pred Value : 0.6923 
#>           Neg Pred Value : 0.8385 
#>               Prevalence : 0.2650 
#>           Detection Rate : 0.1350 
#>     Detection Prevalence : 0.1950 
#>        Balanced Accuracy : 0.7139 
#>                Precision : 0.6923 
#>                   Recall : 0.5094 
#> 
#>         'Positive' Class : 1

Hosmer Lemeshow Test

blr_test_hosmer_lemeshow(model)
#>            Partition for the Hosmer & Lemeshow Test            
#> --------------------------------------------------------------
#>                         def = 1                 def = 0        
#> Group    Total    Observed    Expected    Observed    Expected 
#> --------------------------------------------------------------
#>   1       20         0          0.16         20        19.84   
#>   2       20         0          0.53         20        19.47   
#>   3       20         2          0.99         18        19.01   
#>   4       20         1          1.64         19        18.36   
#>   5       21         3          2.72         18        18.28   
#>   6       19         3          4.05         16        14.95   
#>   7       20         7          6.50         13        13.50   
#>   8       20         10         8.90         10        11.10   
#>   9       20         13        11.49         7          8.51   
#>  10       20         14        16.02         6          3.98   
#> --------------------------------------------------------------
#> 
#>      Goodness of Fit Test      
#> ------------------------------
#> Chi-Square    DF    Pr > ChiSq 
#> ------------------------------
#>   4.4998      8       0.8095   
#> ------------------------------

Gains Table

blr_gains_table(model)
#>    decile total  1  0       ks tp  tn  fp fn sensitivity specificity accuracy
#> 1       1    20 14  6 22.33346 14 141   6 39    26.41509    95.91837     77.5
#> 2       2    20 13  7 42.09986 27 134  13 26    50.94340    91.15646     80.5
#> 3       3    20 10 10 54.16506 37 124  23 16    69.81132    84.35374     80.5
#> 4       4    20  7 13 58.52907 44 111  36  9    83.01887    75.51020     77.5
#> 5       5    20  3 17 52.62482 47  94  53  6    88.67925    63.94558     70.5
#> 6       6    20  3 17 46.72058 50  77  70  3    94.33962    52.38095     63.5
#> 7       7    20  1 19 35.68220 51  58  89  2    96.22642    39.45578     54.5
#> 8       8    20  2 18 27.21088 53  40 107  0   100.00000    27.21088     46.5
#> 9       9    20  0 20 13.60544 53  20 127  0   100.00000    13.60544     36.5
#> 10     10    20  0 20  0.00000 53   0 147  0   100.00000     0.00000     26.5

Lift Chart

model %>%
  blr_gains_table() %>%
  plot()

ROC Curve

model %>%
  blr_gains_table() %>%
  blr_roc_curve()

KS Chart

model %>%
  blr_gains_table() %>%
  blr_ks_chart()

Lorenz Curve

blr_lorenz_curve(model)

Getting Help

If you encounter a bug, please file a minimal reproducible example using reprex on github. For questions and clarifications, use StackOverflow.

Metadata

Version

0.3.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows