MyNixOS website logo
Description

Bootstrap Algorithms for Finite Population Inference.

Finite Population bootstrap algorithms to estimate the variance of the Horvitz-Thompson estimator for single-stage sampling. For a survey of bootstrap methods for finite populations, see Mashreghi et Al. (2016) <doi:10.1214/16-SS113>.

bootstrapFP

CRAN_Status_Badge

Description

This package provides bootstrap algorithms for Finite Population inference, for estimating the variance of the Horvitz–Thompson estimator.

Installation

To install the package from CRAN, run the following code in R:

install.packages("bootstrapFP")

Or, for the development version:

# if not present, install 'devtools' package
install.packages("devtools")
devtools::install_github("rhobis/bootstrapFP")

Usage

library(bootstrapFP) 

### Generate population data ---
N   <- 20; n <- 5
x   <- rgamma(N, scale=10, shape=5)
y   <- abs( 2*x + 3.7*sqrt(x) * rnorm(N) )
pik <- n * x/sum(x)

### Draw a dummy sample ---
s  <- sample(N, n)

### Estimate bootstrap variance ---
bootstrapFP(y = y[s], pik = n/N, B=100, method = "ppSitter")
bootstrapFP(y = y[s], pik = pik[s], B=10, method = "ppHolmberg", design = 'brewer')
bootstrapFP(y = y[s], pik = pik[s], B=10, D=10, method = "ppChauvet")
bootstrapFP(y = y[s], pik = n/N, B=10, method = "dRaoWu")
bootstrapFP(y = y[s], pik = n/N, B=10, method = "dSitter")
bootstrapFP(y = y[s], pik = pik[s], B=10, method = "dAntalTille_UPS", design='brewer')
bootstrapFP(y = y[s], pik = n/N, B=10, method = "wRaoWuYue") 
bootstrapFP(y = y[s], pik = n/N, B=10, method = "wChipperfieldPreston")
bootstrapFP(y = y[s], pik = pik[s], B=10, method = "wGeneralised", distribution = 'normal')

More

  • Please, report any bug or issue here.
  • For more information, please contact the maintainer at [email protected].
Metadata

Version

0.4.6

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows