Description

Bayesian Projected Normal Regression Models for Circular Data.

Fitting Bayesian multiple and mixed-effect regression models for circular data based on the projected normal distribution. Both continuous and categorical predictors can be included. Sampling from the posterior is performed via an MCMC algorithm. Posterior descriptives of all parameters, model fit statistics and Bayes factors for hypothesis tests for inequality constrained hypotheses are provided. See Cremers, Mulder & Klugkist (2018) <doi:10.1111/bmsp.12108> and Nuñez-Antonio & Guttiérez-Peña (2014) <doi:10.1016/j.csda.2012.07.025>.

bpnreg

CRAN_Status_Badge BuildStatus

The goal of bpnreg is to fit Bayesian projected normal regression models for circular data.

Installation

The R-package bpnreg can be installed from CRAN as follows:

install.packages("bpnreg")

You can install a beta-version of bpnreg from github with:

# install.packages("devtools")
devtools::install_github("joliencremers/bpnreg")

Citation

To cite the package ‘bpnreg’ in publications use:

Jolien Cremers (2020). bpnreg: Bayesian Projected Normal Regression Models for Circular Data. R package version 2.0.1. https://CRAN.R-project.org/package=bpnreg

Example

This is a basic example which shows you how to run a Bayesian projected normal regression model:

library(bpnreg)
bpnr(Phaserad ~ Cond + AvAmp, Motor, its = 100)
#> Iteration:1
#> Iteration:2
#> Iteration:3
#> Iteration:4
#> Iteration:5
#> Iteration:6
#> Iteration:7
#> Iteration:8
#> Iteration:9
#> Iteration:10
#> Iteration:11
#> Iteration:12
#> Iteration:13
#> Iteration:14
#> Iteration:15
#> Iteration:16
#> Iteration:17
#> Iteration:18
#> Iteration:19
#> Iteration:20
#> Iteration:21
#> Iteration:22
#> Iteration:23
#> Iteration:24
#> Iteration:25
#> Iteration:26
#> Iteration:27
#> Iteration:28
#> Iteration:29
#> Iteration:30
#> Iteration:31
#> Iteration:32
#> Iteration:33
#> Iteration:34
#> Iteration:35
#> Iteration:36
#> Iteration:37
#> Iteration:38
#> Iteration:39
#> Iteration:40
#> Iteration:41
#> Iteration:42
#> Iteration:43
#> Iteration:44
#> Iteration:45
#> Iteration:46
#> Iteration:47
#> Iteration:48
#> Iteration:49
#> Iteration:50
#> Iteration:51
#> Iteration:52
#> Iteration:53
#> Iteration:54
#> Iteration:55
#> Iteration:56
#> Iteration:57
#> Iteration:58
#> Iteration:59
#> Iteration:60
#> Iteration:61
#> Iteration:62
#> Iteration:63
#> Iteration:64
#> Iteration:65
#> Iteration:66
#> Iteration:67
#> Iteration:68
#> Iteration:69
#> Iteration:70
#> Iteration:71
#> Iteration:72
#> Iteration:73
#> Iteration:74
#> Iteration:75
#> Iteration:76
#> Iteration:77
#> Iteration:78
#> Iteration:79
#> Iteration:80
#> Iteration:81
#> Iteration:82
#> Iteration:83
#> Iteration:84
#> Iteration:85
#> Iteration:86
#> Iteration:87
#> Iteration:88
#> Iteration:89
#> Iteration:90
#> Iteration:91
#> Iteration:92
#> Iteration:93
#> Iteration:94
#> Iteration:95
#> Iteration:96
#> Iteration:97
#> Iteration:98
#> Iteration:99
#> Iteration:100
#> Projected Normal Regression 
#> 
#> Model 
#> 
#> Call: 
#> bpnr(pred.I = Phaserad ~ Cond + AvAmp, data = Motor, its = 100)
#> 
#> MCMC: 
#> iterations = 100
#> burn-in = 1
#> lag = 
#> 
#> Model Fit: 
#>         Statistic Parameters
#> lppd     -57.1688   8.000000
#> DIC      127.9570   6.915886
#> DIC.alt  124.5182   5.196498
#> WAIC1    127.7447   6.703544
#> WAIC2    129.1263   7.394339
#> 
#> 
#> Linear Coefficients 
#> 
#> Component I: 
#>                     mean        mode          sd      LB HPD      UB HPD
#> (Intercept)   1.35790309  1.53919307 0.391924091  0.65691407 2.057654675
#> Condsemi.imp -0.52983534 -0.41612729 0.530374398 -1.50572773 0.426828296
#> Condimp      -0.68404666 -0.76754183 0.580782922 -1.65486565 0.289774837
#> AvAmp        -0.01179946 -0.01223479 0.009548015 -0.03090843 0.005276706
#> 
#> Component II: 
#>                     mean         mode          sd     LB HPD     UB HPD
#> (Intercept)   1.42614025  1.079492806 0.416421481  0.6984332  2.2183433
#> Condsemi.imp -1.15627523 -1.063931210 0.538037522 -2.2837229 -0.2885647
#> Condimp      -1.01689511 -1.125072141 0.586648246 -1.9668072  0.1881823
#> AvAmp        -0.01046688 -0.009172757 0.009881872 -0.0306683  0.0055209
#> 
#> 
#> Circular Coefficients 
#> 
#> Continuous variables: 
#>   mean ax   mode ax     sd ax     LB ax     UB ax 
#> 102.35258  73.34450  86.63490  24.19556 367.47488 
#> 
#>    mean ac    mode ac      sd ac      LB ac      UB ac 
#>  0.9268703  1.8524139  1.3298789 -0.7441615  2.4409921 
#> 
#>     mean bc     mode bc       sd bc       LB bc       UB bc 
#> -0.16793096  0.02375924  1.29982126 -0.28692522  0.45828966 
#> 
#>       mean AS       mode AS         sd AS         LB AS         UB AS 
#>  4.380087e-04  3.366778e-05  1.555164e-03 -9.855660e-04  5.396278e-03 
#> 
#>     mean SAM     mode SAM       sd SAM       LB SAM       UB SAM 
#> 2.009564e-04 3.131051e-05 3.626970e-04 7.397841e-06 6.529131e-04 
#> 
#>  mean SSDO  mode SSDO    sd SSDO    LB SSSO    UB SSDO 
#> -0.1083323  1.7910062  2.0399111 -2.8212582  2.5798523 
#> 
#> Categorical variables: 
#> 
#> Means: 
#>                           mean       mode        sd         LB        UB
#> (Intercept)          0.8067426  0.8972646 0.1975172  0.4065758 1.1637551
#> Condsemi.imp         0.2985994  0.1569926 0.3678727 -0.4165081 0.9970036
#> Condimp              0.5623415  0.7778834 0.4861090 -0.4705304 1.3894279
#> Condsemi.impCondimp -1.4038001 -0.9012296 1.1367688  2.5048970 0.8284608
#> 
#> Differences: 
#>                          mean       mode        sd         LB       UB
#> Condsemi.imp        0.5095912  0.3943821 0.4515864 -0.3455296 1.390026
#> Condimp             0.2472478 -0.1522208 0.5688090 -0.9860141 1.138581
#> Condsemi.impCondimp 2.3183579  2.0576422 1.0578694 -0.1311784 4.307274
Metadata

Version

2.0.2

License

Unknown

Platforms (71)

    Darwin
    FreeBSD 13
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd13
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd13
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows