MyNixOS website logo
Description

Bayesian Projected Normal Regression Models for Circular Data.

Fitting Bayesian multiple and mixed-effect regression models for circular data based on the projected normal distribution. Both continuous and categorical predictors can be included. Sampling from the posterior is performed via an MCMC algorithm. Posterior descriptives of all parameters, model fit statistics and Bayes factors for hypothesis tests for inequality constrained hypotheses are provided. See Cremers, Mulder & Klugkist (2018) <doi:10.1111/bmsp.12108> and Nuñez-Antonio & Guttiérez-Peña (2014) <doi:10.1016/j.csda.2012.07.025>.

bpnreg

CRAN_Status_Badge

The goal of bpnreg is to fit Bayesian projected normal regression models for circular data.

Installation

The R-package bpnreg can be installed from CRAN as follows:

install.packages("bpnreg")

You can install a beta-version of bpnreg from github with:

# install.packages("devtools")
devtools::install_github("joliencremers/bpnreg")

Citation

To cite the package ‘bpnreg’ in publications use:

Jolien Cremers (2021). bpnreg: Bayesian Projected Normal Regression Models for Circular Data. R package version 2.0.2. https://CRAN.R-project.org/package=bpnreg

Example

This is a basic example which shows you how to run a Bayesian projected normal regression model:

library(bpnreg)
bpnr(Phaserad ~ Cond + AvAmp, Motor, its = 100)
#> Iteration:1
#> Iteration:2
#> Iteration:3
#> Iteration:4
#> Iteration:5
#> Iteration:6
#> Iteration:7
#> Iteration:8
#> Iteration:9
#> Iteration:10
#> Iteration:11
#> Iteration:12
#> Iteration:13
#> Iteration:14
#> Iteration:15
#> Iteration:16
#> Iteration:17
#> Iteration:18
#> Iteration:19
#> Iteration:20
#> Iteration:21
#> Iteration:22
#> Iteration:23
#> Iteration:24
#> Iteration:25
#> Iteration:26
#> Iteration:27
#> Iteration:28
#> Iteration:29
#> Iteration:30
#> Iteration:31
#> Iteration:32
#> Iteration:33
#> Iteration:34
#> Iteration:35
#> Iteration:36
#> Iteration:37
#> Iteration:38
#> Iteration:39
#> Iteration:40
#> Iteration:41
#> Iteration:42
#> Iteration:43
#> Iteration:44
#> Iteration:45
#> Iteration:46
#> Iteration:47
#> Iteration:48
#> Iteration:49
#> Iteration:50
#> Iteration:51
#> Iteration:52
#> Iteration:53
#> Iteration:54
#> Iteration:55
#> Iteration:56
#> Iteration:57
#> Iteration:58
#> Iteration:59
#> Iteration:60
#> Iteration:61
#> Iteration:62
#> Iteration:63
#> Iteration:64
#> Iteration:65
#> Iteration:66
#> Iteration:67
#> Iteration:68
#> Iteration:69
#> Iteration:70
#> Iteration:71
#> Iteration:72
#> Iteration:73
#> Iteration:74
#> Iteration:75
#> Iteration:76
#> Iteration:77
#> Iteration:78
#> Iteration:79
#> Iteration:80
#> Iteration:81
#> Iteration:82
#> Iteration:83
#> Iteration:84
#> Iteration:85
#> Iteration:86
#> Iteration:87
#> Iteration:88
#> Iteration:89
#> Iteration:90
#> Iteration:91
#> Iteration:92
#> Iteration:93
#> Iteration:94
#> Iteration:95
#> Iteration:96
#> Iteration:97
#> Iteration:98
#> Iteration:99
#> Iteration:100
#> Projected Normal Regression 
#> 
#> Model 
#> 
#> Call: 
#> bpnr(pred.I = Phaserad ~ Cond + AvAmp, data = Motor, its = 100)
#> 
#> MCMC: 
#> iterations = 100
#> burn-in = 1
#> lag = 1
#> 
#> Model Fit: 
#>         Statistic Parameters
#> lppd    -57.22945   8.000000
#> DIC     127.66465   6.768024
#> DIC.alt 124.17298   5.022188
#> WAIC1   127.33436   6.437733
#> WAIC2   128.65389   7.097498
#> 
#> 
#> Linear Coefficients 
#> 
#> Component I: 
#>                      mean        mode         sd      LB HPD     UB HPD
#> (Intercept)   1.319611894  1.39128370 0.45635201  0.33485506 2.03794238
#> Condsemi.imp -0.522451171 -0.47667290 0.57057933 -1.55833243 0.50939839
#> Condimp      -0.650053029 -0.99688228 0.64741848 -2.00362696 0.53197461
#> AvAmp        -0.009320081 -0.01808984 0.01296947 -0.03096035 0.01524266
#> 
#> Component II: 
#>                     mean         mode         sd     LB HPD       UB HPD
#> (Intercept)   1.37081341  1.057909990 0.43448499  0.5256653  2.265534446
#> Condsemi.imp -1.13529041 -1.508829276 0.60583443 -2.2586284  0.029840305
#> Condimp      -0.93550260 -1.263941265 0.62075876 -2.3158274 -0.009041090
#> AvAmp        -0.01016616 -0.003931414 0.01062028 -0.0285245  0.008526117
#> 
#> 
#> Circular Coefficients 
#> 
#> Continuous variables: 
#>    mean ax    mode ax      sd ax      LB ax      UB ax 
#>  116.31973   76.25854  562.60196 -154.19115  219.74298 
#> 
#>    mean ac    mode ac      sd ac      LB ac      UB ac 
#>  1.0746179  2.2543777  1.1994513 -0.8224601  2.4169745 
#> 
#>      mean bc      mode bc        sd bc        LB bc        UB bc 
#> -0.034814814 -0.006854753  0.499046459 -0.767238134  0.666230333 
#> 
#>       mean AS       mode AS         sd AS         LB AS         UB AS 
#>  4.875002e-04  6.466495e-05  5.442953e-03 -1.160784e-02  2.842468e-03 
#> 
#>     mean SAM     mode SAM       sd SAM       LB SAM       UB SAM 
#> 1.437848e-03 1.305745e-04 1.940441e-02 3.180594e-08 3.466995e-03 
#> 
#>   mean SSDO   mode SSDO     sd SSDO     LB SSSO     UB SSDO 
#> -0.05101017  1.88339563  1.99577431 -2.77725635  2.64369230 
#> 
#> Categorical variables: 
#> 
#> Means: 
#>                           mean       mode        sd         LB        UB
#> (Intercept)          0.8119255  0.8675846 0.1957991  0.4326112 1.2082844
#> Condsemi.imp         0.2962062  0.3373583 0.3399843 -0.4996824 0.8360214
#> Condimp              0.5851581  0.4454521 0.4819606 -0.4032866 1.4047517
#> Condsemi.impCondimp -1.3273542 -2.0443304 1.1135480 -2.8870086 1.4407720
#> 
#> Differences: 
#>                          mean      mode        sd         LB       UB
#> Condsemi.imp        0.5152442 0.4826193 0.4033441 -0.2197928 1.286760
#> Condimp             0.2261741 0.3480214 0.5484078 -0.8033373 1.395936
#> Condsemi.impCondimp 2.2043432 2.8593855 1.0362019 -0.4035095 3.855837
Metadata

Version

2.0.3

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows