MyNixOS website logo
Description

Beyond the Border - Kernel Density Estimation for Urban Geography.

The kernelSmoothing() function allows you to square and smooth geolocated data. It calculates a classical kernel smoothing (conservative) or a geographically weighted median. There are four major call modes of the function. The first call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth) for a classical kernel smoothing and automatic grid. The second call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth, quantiles) for a geographically weighted median and automatic grid. The third call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth, centroids) for a classical kernel smoothing and user grid. The fourth call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth, quantiles, centroids) for a geographically weighted median and user grid. Geographically weighted summary statistics : a framework for localised exploratory data analysis, C.Brunsdon & al., in Computers, Environment and Urban Systems C.Brunsdon & al. (2002) <doi:10.1016/S0198-9715(01)00009-6>, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition, Diggle, pp. 83-86, (2003) <doi:10.1080/13658816.2014.937718>.

Beyond the Border

R-CMD-check

CRAN_Status

btb ("Beyond the Border - Kernel Density Estimation for Urban Geography") is an R package which provides functions dedicated to urban analysis and density estimation using the KDE (kernel density estimator) method.

A partial transposition of the package in Python is also available: btbpy.

Description

The btb_smooth() function allows you to square and smooth geolocated data. It calculates a classical kernel smoothing (conservative) or a geographically weighted median. There are four major call modes of the function.

  • The first call mode is btb_smooth(obs, epsg, cellsize, bandwidth) for a classical kernel smoothing and automatic grid.
  • The second call mode is btb_smooth(obs, epsg, cellsize, bandwidth, quantiles) for a geographically weighted median and automatic grid.
  • The third call mode is btb_smooth(obs, epsg, cellsize, bandwidth, centroids) for a classical kernel smoothing and user grid.
  • The fourth call mode is btb_smooth(obs, epsg, cellsize, bandwidth, quantiles, centroids) for a geographically weighted median and user grid.

Installation

btb is available on CRAN and can therefore be readily installed

install.packages("btb")

To get a bug fix or to use a feature from the development version, you can install the development version of from GitHub :

install.packages("devtools")
devtools::install_github("InseeFr/btb")

Usage

Details on how to use the package can be found in its documentation. Some applications for spatial smoothing are presented in chapter 8 of the Handbook of Spatial Analysis published by Insee. You advise you to start by consulting the vignette of the package

Contributions

Maintainer: Kim Antunez [email protected]

Creators, authors and contributors:

  • Arlindo DOS SANTOS [aut],
  • François SEMECURBE [aut],
  • Julien PRAMIL [aut]
  • Kim ANTUNEZ [cre, ctb],
  • Auriane RENAUD [ctb],
  • Farida MAROUCHI [ctb]
  • Joachim TIMOTEO [ctb]

References

  • Geographically weighted summary statistics : a framework for localised exploratory data analysis, C.Brunsdon & al., in Computers, Environment and Urban Systems C.Brunsdon & al. (2002) doi:10.1016/S0198-9715(01)00009-6
  • Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition, Diggle, pp. 83-86, (2003) doi:10.1080/13658816.2014.937718.
Metadata

Version

0.2.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows