MyNixOS website logo
Description

Stratified Evaluation of Subgroup Classification Accuracy.

Enables simultaneous statistical inference for the accuracy of multiple classifiers in multiple subgroups (strata). For instance, allows to perform multiple comparisons in diagnostic accuracy studies with co-primary endpoints sensitivity and specificity. (Westphal, Max, and Antonia Zapf. (2021). "Statistical Inference for Diagnostic Test Accuracy Studies with Multiple Comparisons." <arXiv:2105.13469>.)

cases: Stratified Evaluation of Subgroup Classification Accuracy

Project Status: WIP – Initial development is in progress, but therehas not yet been a stable, usable release suitable for thepublic. R buildstatus

cases is an R package to simultaneously assess classification accuracy of multiple classifiers in several subgroups (strata). For instance, it allows to asses the accuracy of multiple candidate (index) diagnostic tests which is often measured with

  • sensitivity (accuracy in the diseased subgroup) and
  • specificity (accuracy in the healthy subgroup).

A widespread goal in diagnostic accuracy studies a so-called co-primary analysis of these two endpoints, i.e. to show a significant benefit (compared to some benchmark) in sensitivity and specificity for at least one of the candidate classifiers. The package implements different methods for multiplicity adjustment for that purpose (e.g. Bonferroni, maxT, pairs bootstrap).


Installation

You can install the development version of cases from GitHub with:

# install.packages("remotes")
remotes::install_github('maxwestphal/cases', build_vignettes = TRUE)

Usage

A vignette which explains the basic functionality of the cases package can be displayed as follows:

vignette(topic="package_overview", package = "cases")

The following vignette shows an exemplary usage of the package in the context of biomarker assessment and prediction model evaluation:

vignette(topic="example_wdbc", package = "cases")

References

Metadata

Version

0.1.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows