MyNixOS website logo
Description

Case-Control and TDT Meta-Analysis Package.

Although many software tools can perform meta-analyses on genetic case-control data, none of these apply to combined case-control and family-based (TDT) studies. This package conducts fixed-effects (with inverse variance weighting) and random-effects [DerSimonian and Laird (1986) <DOI:10.1016/0197-2456(86)90046-2>] meta-analyses on combined genetic data. Specifically, this package implements a fixed-effects model [Kazeem and Farrall (2005) <DOI:10.1046/j.1529-8817.2005.00156.x>] and a random-effects model [Nicodemus (2008) <DOI:10.1186/1471-2105-9-130>] for combined studies.

Introduction

This package conducts fixed-effects (with inverse variance weighting) and random-effects (DerSimonian and Laird (1986)) meta-analyses of case-control or family-based (TDT) genetic data. In addition, catmap performs meta-analyses which combine these two types of study designs. Specifically, this package implements a fixed-effects model (Kazeem and Farrall (2005)) and a random-effects model (Nicodemus (2008)) for combined studies. This package was removed from the CRAN repository sometime after 2009. This is a rendition of the original package updated to work with the newest version of R. The algorithms have not changed since catmap version 1.6.0; however, this version has added some aesthetic improvements.

Quick start

The main function, catmap, accepts data.frame, matrix, or file input. See ?catmapdata for help.

library(catmap)
data(catmapdata)
catmapdata
##          name study  t nt caserisk controlrisk casenotrisk controlnotrisk
## 1  Peter,2002     2  0  0      316         338         220            218
## 2 Abrams,2001     2  0  0      710         146         422             96
## 3   Todd,2003     2  0  0     1004         344         233            543
## 4     Yu,2007     2  0  0     3344         434         544            322
## 5    Wei,2007     1 65 32        0           0           0              0

It is important to save the output of the catmap function for the next step in the analysis.

c1 <- catmap(catmapdata, 0.95, FALSE)

Four secondary functions use the output of the catmap function to build the meta-analysis figures, including the forest plot and the funnel plot. The functions below output these figures to the working directory as pdf files.

# Make forest plots
?catmap.forest
?catmap.sense
?catmap.cumulative

# Make funnel plot
?catmap.funnel
Metadata

Version

1.6.4

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows