MyNixOS website logo
Description

Useful Tools for Cognitive Diagnosis Modeling.

Provides useful tools for cognitive diagnosis modeling (CDM). The package includes functions for empirical Q-matrix estimation and validation, such as the Hull method (Nájera, Sorrel, de la Torre, & Abad, 2021, <doi:10.1111/bmsp.12228>) and the discrete factor loading method (Wang, Song, & Ding, 2018, <doi:10.1007/978-3-319-77249-3_29>). It also contains dimensionality assessment procedures for CDM, including parallel analysis and automated fit comparison as explored in Nájera, Abad, and Sorrel (2021, <doi:10.3389/fpsyg.2021.614470>). Other relevant methods and features for CDM applications, such as the restricted DINA model (Nájera et al., 2023; <doi:10.3102/10769986231158829>), the general nonparametric classification method (Chiu et al., 2018; <doi:10.1007/s11336-017-9595-4>), and corrected estimation of the classification accuracy via multiple imputation (Kreitchmann et al., 2022; <doi:10.3758/s13428-022-01967-5>) are also available. Lastly, the package provides some useful functions for CDM simulation studies, such as random Q-matrix generation and detection of complete/identified Q-matrices.

cdmTools: Useful Tools for Cognitive Diagnosis Modeling

Project Status: Active – The project has reached a stable, usable state and is being actively developed. CRAN_Status_Badge

How to cite this package

Nájera, P., Sorrel, M. A., & Abad, F. J. (2024). cdmTools: Useful Tools for Cognitive Diagnosis Modeling. R package version 1.0.5. https://cran.r-project.org/web/packages/cdmTools/.

Features of the package

  • Empirical Q-matrix estimation and validation
  • Empirical dimensionality assessment of CDM data
  • Attribute profile classification via the general nonparametric classification method (GNPC)
  • R-DINA and R-DINO model estimation
  • Corrected classification accuracy estimation via multiple imputation
  • Person fit evaluation
  • Useful functions for simulation studies involving CDM

Installation

To install this package from source:

  1. Windows users may need to install the Rtools and include the checkbox option of installing Rtools to their path for easier command line usage. Mac users will have to download the necessary tools from the Xcode and its related command line tools (found within Xcode's Preference Pane under Downloads/Components); most Linux distributions should already have up to date compilers (or if not they can be updated easily).
  2. Install the devtools package (if necessary), and install the package from the Github source code.
#install.packages("devtools")
devtools::install_github("Pablo-Najera/cdmTools")

Bug reports

Please report any bugs at https://github.com/Pablo-Najera/cdmTools/issues.

Metadata

Version

1.0.5

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows