MyNixOS website logo
Description

Simple Functions to Save Time and Memory.

Fast and memory-efficient (or 'cheap') tools to facilitate efficient programming, saving time and memory. It aims to provide 'cheaper' alternatives to common base R functions, as well as some additional functions.

cheapr

R-CMD-check CRANstatus Codecov testcoverage

In cheapr, ‘cheap’ means fast and memory-efficient, and that’s exactly the philosophy that cheapr aims to follow.

Installation

You can install the development version of cheapr like so:

remotes::install_github("NicChr/cheapr")

Last-observation carried forward (minor optimisation)

num_na() is a useful function to efficiently return the number of NA values and can be used in a variety of problems.

Here is an example of a minor optimisation we can add to vctrs::vec_fill_missing to return x if x has zero or only NA values.

library(cheapr)
library(vctrs)
library(bench)

na_locf <- function(x){
  # num_na is recursive so we compare it to unlisted length
  if (num_na(x) %in% c(0, unlisted_length(x))){
    x
  } else {
    vec_fill_missing(x, direction = "down")
  }
}
x <- rep(NA, 10^6)
identical(x, na_locf(x))
#> [1] TRUE
mark(na_locf(x), vec_fill_missing(x, direction = "down"))
#> # A tibble: 2 × 6
#>   expression                             min median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>                        <bch:tm> <bch:>     <dbl> <bch:byt>    <dbl>
#> 1 "na_locf(x)"                       983.1µs 1.04ms      966.        0B      0  
#> 2 "vec_fill_missing(x, direction =…   4.59ms 5.14ms      191.    11.4MB     63.6
mark(na_locf(x), vec_fill_missing(x, direction = "down"))
#> # A tibble: 2 × 6
#>   expression                             min median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>                        <bch:tm> <bch:>     <dbl> <bch:byt>    <dbl>
#> 1 "na_locf(x)"                       983.5µs 1.04ms      964.        0B       0 
#> 2 "vec_fill_missing(x, direction =…   3.82ms 5.05ms      205.    11.4MB     150.

All the NA handling functions in cheapr can make use of multiple cores on your machine using openMP.

# 1 core by default
mark(num_na(x), sum(is.na(x)))
#> # A tibble: 2 × 6
#>   expression         min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>    <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 num_na(x)      980.2µs   1.04ms      958.        0B      0  
#> 2 sum(is.na(x))   1.54ms   1.72ms      555.    3.81MB     51.2
# 4 cores
options(cheapr.cores = 4)
mark(num_na(x), sum(is.na(x)))
#> # A tibble: 2 × 6
#>   expression         min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>    <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 num_na(x)      266.2µs 328.55µs     2859.        0B      0  
#> 2 sum(is.na(x))   1.54ms   1.72ms      557.    3.81MB     51.4

Efficient NA counts by row/col

m <- matrix(x, ncol = 10^3)
# Number of NA values by row
mark(row_na_counts(m), 
     rowSums(is.na(m)))
#> # A tibble: 2 × 6
#>   expression             min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>        <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 row_na_counts(m)    1.18ms   2.63ms      383.   16.94KB      0  
#> 2 rowSums(is.na(m))   2.62ms   3.57ms      280.    3.82MB     29.0
# Number of NA values by col
mark(col_na_counts(m), 
     colSums(is.na(m)))
#> # A tibble: 2 × 6
#>   expression             min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>        <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 col_na_counts(m)   766.3µs  950.8µs     1070.   17.77KB      0  
#> 2 colSums(is.na(m))   1.81ms   2.77ms      364.    3.82MB     35.9

is_na is a multi-threaded alternative to is.na

x <- rnorm(10^6)
x[sample.int(10^6, 10^5)] <- NA
mark(is.na(x), is_na(x))
#> # A tibble: 2 × 6
#>   expression      min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 is.na(x)      731µs   1.82ms      595.    3.81MB     99.7
#> 2 is_na(x)      495µs  868.3µs     1146.    3.82MB    112.

### posixlt method is much faster
hours <- as.POSIXlt(seq.int(0, length.out = 10^6, by = 3600),
                    tz = "UTC")
hours[sample.int(10^6, 10^5)] <- NA

mark(is.na(hours), is_na(hours))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#>   expression        min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>   <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 is.na(hours)    1.21s    1.21s     0.826      61MB    0.826
#> 2 is_na(hours)   6.31ms   7.85ms   109.       13.8MB   11.9

It differs in 2 regards:

  • List elements are regarded as NA when either that element is an NA value or it is a list containing only NA values.
  • For data frames, is_na returns a logical vector where TRUE defines an empty row of only NA values.
# List example
is.na(list(NA, list(NA, NA), 10))
#> [1]  TRUE FALSE FALSE
is_na(list(NA, list(NA, NA), 10))
#> [1]  TRUE  TRUE FALSE

# Data frame example
df <- data.frame(x = c(1, NA, 3),
                 y = c(NA, NA, NA))
df
#>    x  y
#> 1  1 NA
#> 2 NA NA
#> 3  3 NA
is_na(df)
#> [1] FALSE  TRUE FALSE
is_na(df)
#> [1] FALSE  TRUE FALSE
# The below identity should hold
identical(is_na(df), row_na_counts(df) == ncol(df))
#> [1] TRUE

is_na and all the NA handling functions fall back on calling is.na() if no suitable method is found. This means that custom objects like vctrs rcrds and more are supported.

Cheap data frame summaries with overview

Inspired by the excellent skimr package, overview() is a cheaper alternative designed for larger data.

df <- data.frame(
  x = sample.int(100, 10^7, TRUE),
  y = factor_(sample(LETTERS, 10^7, TRUE)),
  z = rnorm(10^7)
)
overview(df, hist = TRUE)
#> obs: 10000000 
#> cols: 3 
#> 
#> ----- Numeric -----
#>   col   class n_missing p_complete n_unique  mean    p0   p25 p50  p75 p100
#> 1   x integer         0          1      100 50.51     1    25  51   75  100
#> 2   z numeric         0          1 10000000     0 -5.18 -0.68   0 0.67 5.08
#>    iqr    sd  hist
#> 1   50 28.87 ▇▇▇▇▇
#> 2 1.35     1 ▁▂▇▂▁
#> 
#> ----- Categorical -----
#>   col  class n_missing p_complete n_unique n_levels min max
#> 1   y factor         0          1       26       26   A   Z
mark(overview(df))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 1 × 6
#>   expression        min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>   <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 overview(df)    1.07s    1.07s     0.935    76.3MB    0.935

Cheaper and consistent subsetting with sset

sset(iris, 1:5)
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2  setosa
#> 2          4.9         3.0          1.4         0.2  setosa
#> 3          4.7         3.2          1.3         0.2  setosa
#> 4          4.6         3.1          1.5         0.2  setosa
#> 5          5.0         3.6          1.4         0.2  setosa
sset(iris, 1:5, j = "Species")
#>   Species
#> 1  setosa
#> 2  setosa
#> 3  setosa
#> 4  setosa
#> 5  setosa

# sset always returns a data frame when input is a data frame

sset(iris, 1, 1) # data frame
#>   Sepal.Length
#> 1          5.1
iris[1, 1] # not a data frame
#> [1] 5.1

x <- sample.int(10^6, 10^4, TRUE)
y <- sample.int(10^6, 10^4, TRUE)
mark(sset(x, x %in_% y), sset(x, x %in% y), x[x %in% y])
#> # A tibble: 3 × 6
#>   expression              min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>         <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 sset(x, x %in_% y)   79.6µs    120µs     8445.    88.3KB     2.08
#> 2 sset(x, x %in% y)   150.3µs    236µs     4263.   285.4KB     6.81
#> 3 x[x %in% y]         132.4µs    212µs     4665.   324.5KB     6.90

sset uses an internal range-based subset when i is an ALTREP integer sequence of the form m:n.

mark(sset(df, 0:10^5), df[0:10^5, , drop = FALSE])
#> # A tibble: 2 × 6
#>   expression                      min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>                 <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 sset(df, 0:10^5)            171.3µs  544.7µs     1857.    1.53MB    14.3 
#> 2 df[0:10^5, , drop = FALSE]   6.36ms   7.28ms      137.    4.83MB     2.08

It also accepts negative indexes

mark(sset(df, -10^4:0), 
     df[-10^4:0, , drop = FALSE],
     check = FALSE) # The only difference is the row names
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#>   expression                       min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>                  <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 sset(df, -10^4:0)             50.4ms   62.6ms     12.5      152MB     8.95
#> 2 df[-10^4:0, , drop = FALSE]  840.1ms  840.1ms      1.19     776MB     5.95

The biggest difference between sset and [ is the way logical vectors are handled. The two main differences when i is a logical vector are:

  • NA values are ignored, only the locations of TRUE values are used.
  • i must be the same length as x and is not recycled.
# Examples with NAs
x <- c(1, 5, NA, NA, -5)
x[x > 0]
#> [1]  1  5 NA NA
sset(x, x > 0)
#> [1] 1 5

# Example with length(i) < length(x)
sset(x, TRUE)
#> Error in check_length(i, length(x)): i must have length 5

# This is equivalent 
x[TRUE]
#> [1]  1  5 NA NA -5
# to..
sset(x)
#> [1]  1  5 NA NA -5

Vector and data frame lags with lag_()

set.seed(37)
lag_(1:10, 3) # Lag(3)
#>  [1] NA NA NA  1  2  3  4  5  6  7
lag_(1:10, -3) # Lead(3)
#>  [1]  4  5  6  7  8  9 10 NA NA NA

# Using an example from data.table
library(data.table)
dt <- data.table(year=2010:2014, v1=runif(5), v2=1:5, v3=letters[1:5])

# Similar to data.table::shift()

lag_(dt, 1) # Lag 
#>     year         v1    v2     v3
#>    <int>      <num> <int> <char>
#> 1:    NA         NA    NA   <NA>
#> 2:  2010 0.54964085     1      a
#> 3:  2011 0.07883715     2      b
#> 4:  2012 0.64879698     3      c
#> 5:  2013 0.49685336     4      d
lag_(dt, -1) # Lead
#>     year         v1    v2     v3
#>    <int>      <num> <int> <char>
#> 1:  2011 0.07883715     2      b
#> 2:  2012 0.64879698     3      c
#> 3:  2013 0.49685336     4      d
#> 4:  2014 0.71878731     5      e
#> 5:    NA         NA    NA   <NA>

With lag_ we can update variables by reference, including entire data frames

# At the moment, shift() cannot do this
lag_(dt, set = TRUE)
#>     year         v1    v2     v3
#>    <int>      <num> <int> <char>
#> 1:    NA         NA    NA   <NA>
#> 2:  2010 0.54964085     1      a
#> 3:  2011 0.07883715     2      b
#> 4:  2012 0.64879698     3      c
#> 5:  2013 0.49685336     4      d

dt # Was updated by reference
#>     year         v1    v2     v3
#>    <int>      <num> <int> <char>
#> 1:    NA         NA    NA   <NA>
#> 2:  2010 0.54964085     1      a
#> 3:  2011 0.07883715     2      b
#> 4:  2012 0.64879698     3      c
#> 5:  2013 0.49685336     4      d

lag2_ is a more generalised variant that supports vectors of lags, custom ordering and run lengths.

lag2_(dt, order = 5:1) # Reverse order lag (same as lead)
#>     year         v1    v2     v3
#>    <int>      <num> <int> <char>
#> 1:  2010 0.54964085     1      a
#> 2:  2011 0.07883715     2      b
#> 3:  2012 0.64879698     3      c
#> 4:  2013 0.49685336     4      d
#> 5:    NA         NA    NA   <NA>
lag2_(dt, -1) # Same as above
#>     year         v1    v2     v3
#>    <int>      <num> <int> <char>
#> 1:  2010 0.54964085     1      a
#> 2:  2011 0.07883715     2      b
#> 3:  2012 0.64879698     3      c
#> 4:  2013 0.49685336     4      d
#> 5:    NA         NA    NA   <NA>
lag2_(dt, c(1, -1)) # Alternating lead/lag
#>     year         v1    v2     v3
#>    <int>      <num> <int> <char>
#> 1:    NA         NA    NA   <NA>
#> 2:  2011 0.07883715     2      b
#> 3:  2010 0.54964085     1      a
#> 4:  2013 0.49685336     4      d
#> 5:  2012 0.64879698     3      c
lag2_(dt, c(-1, 0, 0, 0, 0)) # Lead e.g. only first row
#>     year         v1    v2     v3
#>    <int>      <num> <int> <char>
#> 1:  2010 0.54964085     1      a
#> 2:  2010 0.54964085     1      a
#> 3:  2011 0.07883715     2      b
#> 4:  2012 0.64879698     3      c
#> 5:  2013 0.49685336     4      d

Greatest common divisor and smallest common multiple

gcd2(5, 25)
#> [1] 5
scm2(5, 6)
#> [1] 30

gcd(seq(5, 25, by = 5))
#> [1] 5
scm(seq(5, 25, by = 5))
#> [1] 300

x <- seq(1L, 1000000L, 1L)
mark(gcd(x))
#> # A tibble: 1 × 6
#>   expression      min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 gcd(x)        1.3µs    1.4µs   658389.        0B        0
x <- seq(0, 10^6, 0.5)
mark(gcd(x))
#> # A tibble: 1 × 6
#>   expression      min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 gcd(x)       46.6ms   47.4ms      21.0        0B        0

Creating many sequences

As an example, to create 3 sequences with different increments,
the usual approach might be to use lapply to loop through the increment values together with seq()

# Base R
increments <- c(1, 0.5, 0.1)
start <- 1
end <- 5
unlist(lapply(increments, \(x) seq(start, end, x)))
#>  [1] 1.0 2.0 3.0 4.0 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.1 1.2 1.3 1.4
#> [20] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3
#> [39] 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

In cheapr you can use seq_() which accepts vector arguments.

seq_(start, end, increments)
#>  [1] 1.0 2.0 3.0 4.0 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.1 1.2 1.3 1.4
#> [20] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3
#> [39] 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

Use add_id = TRUE to label the individual sequences.

seq_(start, end, increments, add_id = TRUE)
#>   1   1   1   1   1   2   2   2   2   2   2   2   2   2   3   3   3   3   3   3 
#> 1.0 2.0 3.0 4.0 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.1 1.2 1.3 1.4 1.5 
#>   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
#> 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 
#>   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
#> 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

If you know the sizes of your sequences beforehand, use sequence_()

seq_sizes <- c(3, 5, 10)
sequence_(seq_sizes, from = 0, by = 1/3, add_id = TRUE) |> 
  enframe_()
#> # A tibble: 18 × 2
#>    name  value
#>    <chr> <dbl>
#>  1 1     0    
#>  2 1     0.333
#>  3 1     0.667
#>  4 2     0    
#>  5 2     0.333
#>  6 2     0.667
#>  7 2     1    
#>  8 2     1.33 
#>  9 3     0    
#> 10 3     0.333
#> 11 3     0.667
#> 12 3     1    
#> 13 3     1.33 
#> 14 3     1.67 
#> 15 3     2    
#> 16 3     2.33 
#> 17 3     2.67 
#> 18 3     3

You can also calculate the sequence sizes using seq_size()

seq_size(start, end, increments)
#> [1]  5  9 41

‘Cheaper’ Base R alternatives

which

# which()
x <- rep(TRUE, 10^6)
mark(cheapr_which = which_(x),
     base_which = which(x))
#> # A tibble: 2 × 6
#>   expression        min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>   <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr_which   1.99ms   3.44ms      290.    3.81MB     2.09
#> 2 base_which    677.3µs   2.73ms      382.    7.63MB     6.98
x <- rep(FALSE, 10^6)
mark(cheapr_which = which_(x),
     base_which = which(x))
#> # A tibble: 2 × 6
#>   expression        min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>   <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr_which    227µs    286µs     3215.        0B      0  
#> 2 base_which      453µs    482µs     2070.    3.81MB     17.6
x <- c(rep(TRUE, 5e05), rep(FALSE, 1e06))
mark(cheapr_which = which_(x),
     base_which = which(x))
#> # A tibble: 2 × 6
#>   expression        min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>   <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr_which   1.21ms   2.04ms      484.    1.91MB     2.07
#> 2 base_which      782µs   1.79ms      562.    7.63MB     9.36
x <- c(rep(FALSE, 5e05), rep(TRUE, 1e06))
mark(cheapr_which = which_(x),
     base_which = which(x))
#> # A tibble: 2 × 6
#>   expression        min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>   <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr_which   2.94ms   4.45ms      228.    3.81MB     2.07
#> 2 base_which    923.7µs      3ms      334.    9.54MB     6.82
x <- sample(c(TRUE, FALSE), 10^6, TRUE)
x[sample.int(10^6, 10^4)] <- NA
mark(cheapr_which = which_(x),
     base_which = which(x))
#> # A tibble: 2 × 6
#>   expression        min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>   <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr_which   1.95ms   2.58ms      385.    1.89MB     2.09
#> 2 base_which     3.18ms   4.09ms      247.     5.7MB     4.33

factor

# factor()
x <- sample(seq(-10^3, 10^3, 0.01))
y <- do.call(paste0, expand.grid(letters, letters, letters, letters))
mark(cheapr_factor = factor_(x), 
     base_factor = factor(x))
#> # A tibble: 2 × 6
#>   expression         min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>    <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr_factor   9.38ms   9.71ms    102.      4.59MB        0
#> 2 base_factor   600.24ms 600.24ms      1.67   27.84MB        0
mark(cheapr_factor = factor_(x, order = FALSE), 
     base_factor = factor(x, levels = unique(x)))
#> # A tibble: 2 × 6
#>   expression         min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>    <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr_factor   4.39ms   4.91ms    206.      1.53MB        0
#> 2 base_factor   940.57ms 940.57ms      1.06   22.79MB        0
mark(cheapr_factor = factor_(y), 
     base_factor = factor(y))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#>   expression         min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>    <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr_factor 201.72ms  201.8ms     4.92     5.23MB    0    
#> 2 base_factor      3.04s    3.04s     0.329   54.35MB    0.329
mark(cheapr_factor = factor_(y, order = FALSE), 
     base_factor = factor(y, levels = unique(y)))
#> # A tibble: 2 × 6
#>   expression         min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>    <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr_factor   4.99ms      6ms     168.     3.49MB     0   
#> 2 base_factor    52.39ms   56.3ms      18.0   39.89MB     2.25

intersect & setdiff

# intersect() & setdiff()
x <- sample.int(10^6, 10^5, TRUE)
y <- sample.int(10^6, 10^5, TRUE)
mark(cheapr_intersect = intersect_(x, y, dups = FALSE),
     base_intersect = intersect(x, y))
#> # A tibble: 2 × 6
#>   expression            min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>       <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr_intersect   2.76ms   2.93ms      338.    1.18MB     0   
#> 2 base_intersect     5.04ms   5.45ms      181.    5.16MB     2.24
mark(cheapr_setdiff = setdiff_(x, y, dups = FALSE),
     base_setdiff = setdiff(x, y))
#> # A tibble: 2 × 6
#>   expression          min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>     <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr_setdiff      3ms   3.17ms      312.    1.76MB     0   
#> 2 base_setdiff     5.22ms   5.42ms      183.    5.71MB     2.21

%in_% and %!in_%

mark(cheapr = x %in_% y,
     base = x %in% y)
#> # A tibble: 2 × 6
#>   expression      min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr       1.77ms   1.88ms      525.  781.34KB     0   
#> 2 base         2.62ms   3.13ms      320.    2.53MB     2.21
mark(cheapr = x %!in_% y,
     base = !x %in% y)
#> # A tibble: 2 × 6
#>   expression      min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr        1.7ms    1.9ms      524.  787.84KB     0   
#> 2 base         2.69ms   3.14ms      317.    2.91MB     2.20

cut.default

# cut.default()
x <- rnorm(10^7)
b <- seq(0, max(x), 0.2)
mark(cheapr_cut = cut_numeric(x, b), 
     base_cut = cut(x, b))
#> # A tibble: 2 × 6
#>   expression      min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 cheapr_cut    144ms    144ms      6.92    38.1MB     2.31
#> 2 base_cut      474ms    474ms      2.11   267.1MB     2.11
Metadata

Version

0.9.3

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows