MyNixOS website logo
Description

Learning Sparse Log-Ratios for Compositional Data.

In the context of high-throughput genetic data, CoDaCoRe identifies a set of sparse biomarkers that are predictive of a response variable of interest (Gordon-Rodriguez et al., 2021) <doi:10.1093/bioinformatics/btab645>. More generally, CoDaCoRe can be applied to any regression problem where the independent variable is Compositional (CoDa), to derive a set of scale-invariant log-ratios (ILR or SLR) that are maximally associated to a dependent variable.

CRAN_Status_Badge Downloads Total Downloads

codacore

Update: CoDaCoRe is now live on CRAN

A self-contained, up-to-date implementation of CoDaCoRe, in the R programming language, by the original authors.

The CoDaCoRe guide contains a detailed tutorial on installation, usage and functionality.

Note this repository is under active development. If you would like to use CoDaCoRe on your dataset, and have any questions regarding the installation, usage, implementation, or model itself, do not hesitate to contact [email protected]. Some previously asked questions are available on the Issues page. Contributions, fixes, and feature requests are also welcome - please create an issue, submit a pull request, or email me.

Quick-start: how to install and run CoDaCoRe

  1. We can install CoDaCoRe by running (further details in the guide):
install.packages('codacore')
  1. To fit codacore on some data and check the results (further details in the guide:
library("codacore")
help(codacore) # if in doubt, check documentation
data("Crohn") # load some data and apply codacore
x <- Crohn[, -ncol(Crohn)] + 1
y <- Crohn[, ncol(Crohn)]
model = codacore(
    x, # compositional input, e.g., HTS count data 
    y, # response variable, typically a 0/1 binary indicator 
    logRatioType = "balances", # can use "amalgamations" instead, or abbreviations "B" and "A"
    lambda = 1 # regularization strength (default corresponds to 1SE rule) 
)
print(model)
plot(model)

Reference

Gordon-Rodriguez, Elliott, Thomas P. Quinn, and John P. Cunningham. "Learning sparse log-ratios for high-throughput sequencing data." Bioinformatics 38.1 (2022): 157-163. [link]

Quinn, Thomas P., Elliott Gordon-Rodriguez, and Ionas Erb. "A critique of differential abundance analysis, and advocacy for an alternative." arXiv preprint arXiv:2104.07266 (2021). [link]

Acknowledgements

Thanks for your contributions to codacore!

  • Marcus Fedarko
  • Gregor Seyer
  • Nick Youngblut
  • Antonio Garrido Fernandez.
Metadata

Version

0.0.4

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows