MyNixOS website logo
Description

Consistent Monitoring of Stationarity and Cointegrating Relationships.

We propose a consistent monitoring procedure to detect a structural change from a cointegrating relationship to a spurious relationship. The procedure is based on residuals from modified least squares estimation, using either Fully Modified, Dynamic or Integrated Modified OLS. It is inspired by Chu et al. (1996) <DOI:10.2307/2171955> in that it is based on parameter estimation on a pre-break "calibration" period only, rather than being based on sequential estimation over the full sample. See the discussion paper <DOI:10.2139/ssrn.2624657> for further information. This package provides the monitoring procedures for both the cointegration and the stationarity case (while the latter is just a special case of the former one) as well as printing and plotting methods for a clear presentation of the results.

cointmonitoR

Consistent Monitoring of Stationarity and Cointegrating Relationships.

Travis-CI Build Status CRAN Status Badge

  • Installation (including latest CRAN version of cointReg)
install.packages("cointReg")
devtools::install_github("aschersleben/cointmonitoR", build_vignettes = TRUE)
library("cointmonitoR")
  • Simple example (stationarity, structural break):
set.seed(1909)
eps <- rnorm(200)
x <- c(eps[1:100], cumsum(eps[101:200]) / 2)
test <- monitorStationarity(x, m = 93)
print(test)
oldpar <- par(mfrow = c(2, 1))
plot(test, what = "both", legend = FALSE)
par(oldpar)
  • Package vignette: Provides further examples and explanations.
vignette("cointmonitoR")
  • Package help page: Overview of all available functions:
package?cointmonitoR
devtools::install_github("aschersleben/cointmonitoR", build_vignettes = TRUE)

Theoretical background

We propose a consistent monitoring procedure to detect a structural change from a cointegrating relationship to a spurious relationship. The procedure is based on residuals from modified least squares estimation, using either Fully Modified, Dynamic or Integrated Modified OLS. It is inspired by Chu et al. (1996) in that it is based on parameter estimation on a pre-break "calibration" period only, rather than being based on sequential estimation over the full sample.

See the discussion paper for further information.

This package provides the monitoring procedures for both the cointegration and the stationarity case (the latter is just a special case of the former one) as well as printing and plotting methods for a clear presentation of the results.

References

  • Aschersleben, P. and M. Wagner (2016). cointReg: Parameter Estimation and Inference in a Cointegrating Regression. R package version 0.2.0. https://CRAN.R-project.org/package=cointReg

  • Chu, C.J., M. Stinchcombe and H. White (1996): "Monitoring Structural Change", Econometrica, 64, 1045--1065, DOI:10.2307/2297912.

  • Wagner, M. and D. Wied (2015): "Monitoring Stationarity and Cointegration," Discussion Paper, DOI:10.2139/ssrn.2624657

Metadata

Version

0.1.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows